有限域上的非代数几何琐碎同调类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Federico Scavia , Fumiaki Suzuki
{"title":"有限域上的非代数几何琐碎同调类","authors":"Federico Scavia ,&nbsp;Fumiaki Suzuki","doi":"10.1016/j.aim.2024.109964","DOIUrl":null,"url":null,"abstract":"<div><div>We give the first examples of smooth projective varieties <em>X</em> over a finite field <span><math><mi>F</mi></math></span> admitting a non-algebraic torsion <em>ℓ</em>-adic cohomology class of degree 4 which vanishes over <span><math><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></math></span>. We use them to show that two versions of the integral Tate conjecture over <span><math><mi>F</mi></math></span> are not equivalent to one another and that a fundamental exact sequence of Colliot-Thélène and Kahn does not necessarily split. Some of our examples have dimension 4, and are the first known examples of fourfolds with non-vanishing <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>nr</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-algebraic geometrically trivial cohomology classes over finite fields\",\"authors\":\"Federico Scavia ,&nbsp;Fumiaki Suzuki\",\"doi\":\"10.1016/j.aim.2024.109964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give the first examples of smooth projective varieties <em>X</em> over a finite field <span><math><mi>F</mi></math></span> admitting a non-algebraic torsion <em>ℓ</em>-adic cohomology class of degree 4 which vanishes over <span><math><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></math></span>. We use them to show that two versions of the integral Tate conjecture over <span><math><mi>F</mi></math></span> are not equivalent to one another and that a fundamental exact sequence of Colliot-Thélène and Kahn does not necessarily split. Some of our examples have dimension 4, and are the first known examples of fourfolds with non-vanishing <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>nr</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>)</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004791\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了有限域 F 上的光滑投影变项 X 的第一个例子,该投影变项承认一个在 F‾ 上消失的 4 度非代数扭转 ℓ-adic 同调类。我们用它们来证明在 F 上的积分泰特猜想的两个版本并不等同,而且科利奥-泰莱与卡恩的基本精确序列并不一定分裂。我们的一些例子维数为 4,是已知的第一个 Hnr3(X,Q2/Z2(2))不求和的四折的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-algebraic geometrically trivial cohomology classes over finite fields
We give the first examples of smooth projective varieties X over a finite field F admitting a non-algebraic torsion -adic cohomology class of degree 4 which vanishes over F. We use them to show that two versions of the integral Tate conjecture over F are not equivalent to one another and that a fundamental exact sequence of Colliot-Thélène and Kahn does not necessarily split. Some of our examples have dimension 4, and are the first known examples of fourfolds with non-vanishing Hnr3(X,Q2/Z2(2)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信