通过过渡金属掺杂剂提高 BNyne/石墨烯异质结构的量子电容,实现高性能超级电容器

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Miguel Escobar , Maryam Ghareeb , Mustafa Mudhafar , Marwah.J. Hezam , Nouby M. Ghazaly , Shaima Haithem Zaki , Hussam Abdali Abdulridui , Ayodele Lasisi , Saiful Islam
{"title":"通过过渡金属掺杂剂提高 BNyne/石墨烯异质结构的量子电容,实现高性能超级电容器","authors":"Miguel Escobar ,&nbsp;Maryam Ghareeb ,&nbsp;Mustafa Mudhafar ,&nbsp;Marwah.J. Hezam ,&nbsp;Nouby M. Ghazaly ,&nbsp;Shaima Haithem Zaki ,&nbsp;Hussam Abdali Abdulridui ,&nbsp;Ayodele Lasisi ,&nbsp;Saiful Islam","doi":"10.1016/j.jorganchem.2024.123404","DOIUrl":null,"url":null,"abstract":"<div><div>Using Density functional theory (DFT), we investigated the charge storage capacity, quantum capacitance (C<sub>Q</sub>), geometry and electronic structures of BNyne/graphene heterostructures (BNyneGHs), as well as the impact of transition-metal dopants on their C<sub>Q</sub>. Our results showed that doping was more effective than vacancy defects in improving the C<sub>Q</sub> of BNyneGHs. Ti-doped BNyneGHs exhibited the highest C<sub>Q</sub> value of 360.08 μF/cm<sup>2</sup>, making them ideal positive electrode materials for supercapacitors (SCs). The presence of doping agents was found to enhance the density of states (DOS) around the Fermi level, resulting in improved C<sub>Q</sub>. Our calculations identified potential cathode or anode materials for high-energy-density SCs, providing theoretical support for the design of high-capacitance SCs.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123404"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors\",\"authors\":\"Miguel Escobar ,&nbsp;Maryam Ghareeb ,&nbsp;Mustafa Mudhafar ,&nbsp;Marwah.J. Hezam ,&nbsp;Nouby M. Ghazaly ,&nbsp;Shaima Haithem Zaki ,&nbsp;Hussam Abdali Abdulridui ,&nbsp;Ayodele Lasisi ,&nbsp;Saiful Islam\",\"doi\":\"10.1016/j.jorganchem.2024.123404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using Density functional theory (DFT), we investigated the charge storage capacity, quantum capacitance (C<sub>Q</sub>), geometry and electronic structures of BNyne/graphene heterostructures (BNyneGHs), as well as the impact of transition-metal dopants on their C<sub>Q</sub>. Our results showed that doping was more effective than vacancy defects in improving the C<sub>Q</sub> of BNyneGHs. Ti-doped BNyneGHs exhibited the highest C<sub>Q</sub> value of 360.08 μF/cm<sup>2</sup>, making them ideal positive electrode materials for supercapacitors (SCs). The presence of doping agents was found to enhance the density of states (DOS) around the Fermi level, resulting in improved C<sub>Q</sub>. Our calculations identified potential cathode or anode materials for high-energy-density SCs, providing theoretical support for the design of high-capacitance SCs.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1022 \",\"pages\":\"Article 123404\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X24003991\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24003991","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们利用密度泛函理论(DFT)研究了硼炔/石墨烯异质结构(BNyne/GHs)的电荷存储容量、量子电容(CQ)、几何形状和电子结构,以及过渡金属掺杂物对其 CQ 的影响。我们的研究结果表明,在改善 BNyneGHs 的 CQ 方面,掺杂比空位缺陷更有效。掺杂钛的 BNyneGHs 的 CQ 值最高,达到 360.08 μF/cm2,是超级电容器 (SC) 理想的正极材料。研究发现,掺杂剂的存在提高了费米级附近的状态密度(DOS),从而改善了 CQ。我们的计算为高能量密度超级电容器确定了潜在的阴极或阳极材料,为高电容超级电容器的设计提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors

Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors
Using Density functional theory (DFT), we investigated the charge storage capacity, quantum capacitance (CQ), geometry and electronic structures of BNyne/graphene heterostructures (BNyneGHs), as well as the impact of transition-metal dopants on their CQ. Our results showed that doping was more effective than vacancy defects in improving the CQ of BNyneGHs. Ti-doped BNyneGHs exhibited the highest CQ value of 360.08 μF/cm2, making them ideal positive electrode materials for supercapacitors (SCs). The presence of doping agents was found to enhance the density of states (DOS) around the Fermi level, resulting in improved CQ. Our calculations identified potential cathode or anode materials for high-energy-density SCs, providing theoretical support for the design of high-capacitance SCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信