BV(Ω) 上的非对称仿射 Poincaré-Sobolev-Wirtinger 不等式和一维极值的表征

IF 1.3 2区 数学 Q1 MATHEMATICS
Raul Fernandes Horta, Marcos Montenegro
{"title":"BV(Ω) 上的非对称仿射 Poincaré-Sobolev-Wirtinger 不等式和一维极值的表征","authors":"Raul Fernandes Horta,&nbsp;Marcos Montenegro","doi":"10.1016/j.na.2024.113673","DOIUrl":null,"url":null,"abstract":"<div><div>The present work deals with sharp asymmetric Poincaré–Sobolev–Wirtinger inequalities involving the Zhang’s energy on the space of bounded variation functions <span><math><mrow><mi>B</mi><mi>V</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for any bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> in any dimension <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We establish the existence of a curve of optimal constants along with several of its properties such as attainability, symmetry, monotonicity, positivity, continuity and also asymptotic ones. Moreover, for <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, our approach allows to exhibit its precise shape and to characterize all extremizers.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113673"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric affine Poincaré–Sobolev–Wirtinger inequalities on BV(Ω) and characterization of extremizers in one-dimension\",\"authors\":\"Raul Fernandes Horta,&nbsp;Marcos Montenegro\",\"doi\":\"10.1016/j.na.2024.113673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present work deals with sharp asymmetric Poincaré–Sobolev–Wirtinger inequalities involving the Zhang’s energy on the space of bounded variation functions <span><math><mrow><mi>B</mi><mi>V</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for any bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> in any dimension <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We establish the existence of a curve of optimal constants along with several of its properties such as attainability, symmetry, monotonicity, positivity, continuity and also asymptotic ones. Moreover, for <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, our approach allows to exhibit its precise shape and to characterize all extremizers.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113673\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001925\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001925","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究涉及任何维数 n≥1 的有界域 Ω⊂Rn 的有界变化函数 BV(Ω)空间上涉及张氏能的尖锐非对称 Poincaré-Sobolev-Wirtinger 不等式。我们确定了最优常数曲线的存在性及其若干性质,如可达性、对称性、单调性、正向性、连续性和渐近性。此外,对于 n=1,我们的方法可以展示其精确形状并描述所有极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric affine Poincaré–Sobolev–Wirtinger inequalities on BV(Ω) and characterization of extremizers in one-dimension
The present work deals with sharp asymmetric Poincaré–Sobolev–Wirtinger inequalities involving the Zhang’s energy on the space of bounded variation functions BV(Ω) for any bounded domain ΩRn in any dimension n1. We establish the existence of a curve of optimal constants along with several of its properties such as attainability, symmetry, monotonicity, positivity, continuity and also asymptotic ones. Moreover, for n=1, our approach allows to exhibit its precise shape and to characterize all extremizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信