度量空间中的恒温动力学理论:摆平性

IF 1.3 2区 数学 Q1 MATHEMATICS
Carlo Bianca , Nicolas Saintier
{"title":"度量空间中的恒温动力学理论:摆平性","authors":"Carlo Bianca ,&nbsp;Nicolas Saintier","doi":"10.1016/j.na.2024.113666","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the generalization of the thermostatted kinetic theory within the framework of probability measures. Specifically well-posedness of the Cauchy problem related to a thermostatted kinetic equation for measure-valued functions is established. The external force applied to the system is assumed to be Lipschitz, in contrast to previous work where external forces are generally constant. Existence is obtained by employing an Euler-like approximation scheme which is shown to converge assuming the initial condition has moment of order greater than 2. Uniqueness is proved assuming the gain operator is Lipschitz w.r.t a (new) Monge–Kantorovich–Wasserstein distance <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msub></math></span>, intermediate between the classical <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, <span><math><mrow><mi>r</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, distances. The assumptions on the gain operator are quite general covering <span><math><mi>n</mi></math></span>-ary interaction, and apply in particular to the Kac equation.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113666"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermostatted kinetic theory in measure spaces: Well-posedness\",\"authors\":\"Carlo Bianca ,&nbsp;Nicolas Saintier\",\"doi\":\"10.1016/j.na.2024.113666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to the generalization of the thermostatted kinetic theory within the framework of probability measures. Specifically well-posedness of the Cauchy problem related to a thermostatted kinetic equation for measure-valued functions is established. The external force applied to the system is assumed to be Lipschitz, in contrast to previous work where external forces are generally constant. Existence is obtained by employing an Euler-like approximation scheme which is shown to converge assuming the initial condition has moment of order greater than 2. Uniqueness is proved assuming the gain operator is Lipschitz w.r.t a (new) Monge–Kantorovich–Wasserstein distance <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msub></math></span>, intermediate between the classical <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, <span><math><mrow><mi>r</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, distances. The assumptions on the gain operator are quite general covering <span><math><mi>n</mi></math></span>-ary interaction, and apply in particular to the Kac equation.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113666\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001858\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001858","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于在概率度量框架内对恒温动力学理论进行概括。具体而言,本文建立了与量值函数恒温动力学方程相关的考奇问题的良好拟合。假定施加在系统上的外力为 Lipschitz,这与之前的研究不同,之前的研究通常认为外力是恒定的。假设增益算子在(新的)Monge-Kantorovich-Wasserstein 距离 W2--介于经典的 W2 和 Wr, r<2 距离之间是 Lipschitz,则证明了唯一性。关于增益算子的假设非常普遍,涵盖了 n-ary 相互作用,尤其适用于 Kac 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermostatted kinetic theory in measure spaces: Well-posedness
This paper is devoted to the generalization of the thermostatted kinetic theory within the framework of probability measures. Specifically well-posedness of the Cauchy problem related to a thermostatted kinetic equation for measure-valued functions is established. The external force applied to the system is assumed to be Lipschitz, in contrast to previous work where external forces are generally constant. Existence is obtained by employing an Euler-like approximation scheme which is shown to converge assuming the initial condition has moment of order greater than 2. Uniqueness is proved assuming the gain operator is Lipschitz w.r.t a (new) Monge–Kantorovich–Wasserstein distance W2, intermediate between the classical W2 and Wr, r<2, distances. The assumptions on the gain operator are quite general covering n-ary interaction, and apply in particular to the Kac equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信