纳米金粒子暴露对遗传物质的影响

IF 2.3 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lucía Ramos-Pan , Assia Touzani , Natalia Fernández-Bertólez , Sónia Fraga , Blanca Laffon , Vanessa Valdiglesias
{"title":"纳米金粒子暴露对遗传物质的影响","authors":"Lucía Ramos-Pan ,&nbsp;Assia Touzani ,&nbsp;Natalia Fernández-Bertólez ,&nbsp;Sónia Fraga ,&nbsp;Blanca Laffon ,&nbsp;Vanessa Valdiglesias","doi":"10.1016/j.mrgentox.2024.503827","DOIUrl":null,"url":null,"abstract":"<div><div>Metal nanoparticles, with gold nanoparticles (AuNP) at the forefront, have gained immense attention due to their unique properties. At the nanoscale, gold exhibits remarkable physical, chemical, optical, and electronic features, making it ideal for a plethora of applications, including bioimaging, sensing, diagnostics, and drug delivery. Despite their promising utility, concerns have arisen regarding the potential adverse effects of AuNP on human health. Research has indicated that these nanoparticles can accumulate in vital organs and interact with proteins and cellular structures, potentially leading to diverse toxicological manifestations. The precise understanding of these nano-bio interactions is further complicated by the varied physicochemical properties of AuNP that influence their biological effects. This review aims to consolidate the current knowledge on the genotoxic effects of AuNP, shedding light on the underlying mechanisms and factors affecting their toxicity. The search was conducted in PubMed and Web of Science databases. Eventually, 32 studies focusing on the genotoxic effects of AuNP were included in the review. <em>In vitro</em> and <em>in vivo</em> findings revealed that AuNP can induce primary DNA damage, oxidative DNA damage, chromosomal damage, alterations in gene expression, and effects on epigenetic regulation. These effects were found to be influenced by various factors, including nanoparticle size, shape, and surface coating. However, the existing literature also highlights the challenges associated with assessing the genotoxicity of nanomaterials (NM), emphasizing the need for standardized and adapted testing protocols. The interference of nanoparticles with conventional toxicity assays may lead to unreliable results; thus, specific methodologies tailored for NM evaluation must be implemented. In conclusion, while AuNP hold tremendous potential for innovative applications, their safety profile remains a critical concern. Continued research is imperative to elucidate the mechanisms of AuNP induced genotoxicity and develop robust testing protocols, ensuring their safe and effective use in diverse applications.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"900 ","pages":"Article 503827"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of gold nanoparticle exposure on genetic material\",\"authors\":\"Lucía Ramos-Pan ,&nbsp;Assia Touzani ,&nbsp;Natalia Fernández-Bertólez ,&nbsp;Sónia Fraga ,&nbsp;Blanca Laffon ,&nbsp;Vanessa Valdiglesias\",\"doi\":\"10.1016/j.mrgentox.2024.503827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal nanoparticles, with gold nanoparticles (AuNP) at the forefront, have gained immense attention due to their unique properties. At the nanoscale, gold exhibits remarkable physical, chemical, optical, and electronic features, making it ideal for a plethora of applications, including bioimaging, sensing, diagnostics, and drug delivery. Despite their promising utility, concerns have arisen regarding the potential adverse effects of AuNP on human health. Research has indicated that these nanoparticles can accumulate in vital organs and interact with proteins and cellular structures, potentially leading to diverse toxicological manifestations. The precise understanding of these nano-bio interactions is further complicated by the varied physicochemical properties of AuNP that influence their biological effects. This review aims to consolidate the current knowledge on the genotoxic effects of AuNP, shedding light on the underlying mechanisms and factors affecting their toxicity. The search was conducted in PubMed and Web of Science databases. Eventually, 32 studies focusing on the genotoxic effects of AuNP were included in the review. <em>In vitro</em> and <em>in vivo</em> findings revealed that AuNP can induce primary DNA damage, oxidative DNA damage, chromosomal damage, alterations in gene expression, and effects on epigenetic regulation. These effects were found to be influenced by various factors, including nanoparticle size, shape, and surface coating. However, the existing literature also highlights the challenges associated with assessing the genotoxicity of nanomaterials (NM), emphasizing the need for standardized and adapted testing protocols. The interference of nanoparticles with conventional toxicity assays may lead to unreliable results; thus, specific methodologies tailored for NM evaluation must be implemented. In conclusion, while AuNP hold tremendous potential for innovative applications, their safety profile remains a critical concern. Continued research is imperative to elucidate the mechanisms of AuNP induced genotoxicity and develop robust testing protocols, ensuring their safe and effective use in diverse applications.</div></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"900 \",\"pages\":\"Article 503827\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824001037\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824001037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以金纳米粒子(AuNP)为代表的金属纳米粒子因其独特的性能而备受关注。在纳米尺度上,金显示出卓越的物理、化学、光学和电子特性,使其成为生物成像、传感、诊断和药物输送等大量应用的理想选择。尽管金纳米粒子的应用前景广阔,但人们也开始担心金纳米粒子对人体健康的潜在不利影响。研究表明,这些纳米粒子可在重要器官中积聚,并与蛋白质和细胞结构相互作用,可能导致各种毒理学表现。由于 AuNP 的理化特性各不相同,影响其生物效应,因此要准确理解这些纳米生物相互作用变得更加复杂。本综述旨在整合目前有关 AuNP 基因毒性效应的知识,阐明影响其毒性的潜在机制和因素。本综述在 PubMed 和 Web of Science 数据库中进行了搜索。最终,32 项关注 AuNP 基因毒性效应的研究被纳入综述。体外和体内研究结果表明,AuNP 可诱发原发性 DNA 损伤、氧化性 DNA 损伤、染色体损伤、基因表达改变以及对表观遗传调控的影响。这些效应受多种因素的影响,包括纳米粒子的大小、形状和表面涂层。然而,现有文献也强调了与评估纳米材料(NM)遗传毒性相关的挑战,强调了标准化和适应性测试协议的必要性。纳米颗粒对传统毒性检测的干扰可能会导致不可靠的结果;因此,必须采用专门针对纳米材料评估的特定方法。总之,虽然 AuNP 具有创新应用的巨大潜力,但其安全性仍是一个关键问题。当务之急是继续开展研究,以阐明 AuNP 诱导遗传毒性的机制,并制定稳健的测试协议,确保在各种应用中安全有效地使用 AuNP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of gold nanoparticle exposure on genetic material
Metal nanoparticles, with gold nanoparticles (AuNP) at the forefront, have gained immense attention due to their unique properties. At the nanoscale, gold exhibits remarkable physical, chemical, optical, and electronic features, making it ideal for a plethora of applications, including bioimaging, sensing, diagnostics, and drug delivery. Despite their promising utility, concerns have arisen regarding the potential adverse effects of AuNP on human health. Research has indicated that these nanoparticles can accumulate in vital organs and interact with proteins and cellular structures, potentially leading to diverse toxicological manifestations. The precise understanding of these nano-bio interactions is further complicated by the varied physicochemical properties of AuNP that influence their biological effects. This review aims to consolidate the current knowledge on the genotoxic effects of AuNP, shedding light on the underlying mechanisms and factors affecting their toxicity. The search was conducted in PubMed and Web of Science databases. Eventually, 32 studies focusing on the genotoxic effects of AuNP were included in the review. In vitro and in vivo findings revealed that AuNP can induce primary DNA damage, oxidative DNA damage, chromosomal damage, alterations in gene expression, and effects on epigenetic regulation. These effects were found to be influenced by various factors, including nanoparticle size, shape, and surface coating. However, the existing literature also highlights the challenges associated with assessing the genotoxicity of nanomaterials (NM), emphasizing the need for standardized and adapted testing protocols. The interference of nanoparticles with conventional toxicity assays may lead to unreliable results; thus, specific methodologies tailored for NM evaluation must be implemented. In conclusion, while AuNP hold tremendous potential for innovative applications, their safety profile remains a critical concern. Continued research is imperative to elucidate the mechanisms of AuNP induced genotoxicity and develop robust testing protocols, ensuring their safe and effective use in diverse applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
84
审稿时长
105 days
期刊介绍: Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas: New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results). Alternatives to and refinement of the use of animals in genotoxicity testing. Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials. Studies of epigenetic changes in relation to genotoxic effects. The use of structure-activity relationships in predicting genotoxic effects. The isolation and chemical characterization of novel environmental mutagens. The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures. The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing). MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信