C. Wang , Y. Zhao , K. Huang , J. Zhang , A.D. Shaw , H. Gu , M. Amoozgar , M.I. Friswell , B.K.S. Woods
{"title":"将基于被动能量平衡的传动系统集成到凸轮变形设计中","authors":"C. Wang , Y. Zhao , K. Huang , J. Zhang , A.D. Shaw , H. Gu , M. Amoozgar , M.I. Friswell , B.K.S. Woods","doi":"10.1016/j.ast.2024.109641","DOIUrl":null,"url":null,"abstract":"<div><div>A spiral pulley mechanism can be used to passively balance the energy between the morphing structure and actuation system. Applying the energy balancing concept has the potential to improve the performance of the actuation system by reducing the external energy consumption. In the current study, the integration workflow for the passive energy balancing device is established and is adopted in a variable camber morphing wing. The design variables of the passive energy balancing system are optimised and the effects of the different parameters are discussed together with the adaptability of the passive energy balancing device when the load stiffness changes. An integrated demonstrator was also built to validate the mechanism by measuring the currents in the process of morphing actuation.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109641"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of the passive energy balancing based actuation system into a camber morphing design\",\"authors\":\"C. Wang , Y. Zhao , K. Huang , J. Zhang , A.D. Shaw , H. Gu , M. Amoozgar , M.I. Friswell , B.K.S. Woods\",\"doi\":\"10.1016/j.ast.2024.109641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A spiral pulley mechanism can be used to passively balance the energy between the morphing structure and actuation system. Applying the energy balancing concept has the potential to improve the performance of the actuation system by reducing the external energy consumption. In the current study, the integration workflow for the passive energy balancing device is established and is adopted in a variable camber morphing wing. The design variables of the passive energy balancing system are optimised and the effects of the different parameters are discussed together with the adaptability of the passive energy balancing device when the load stiffness changes. An integrated demonstrator was also built to validate the mechanism by measuring the currents in the process of morphing actuation.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109641\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007703\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007703","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Integration of the passive energy balancing based actuation system into a camber morphing design
A spiral pulley mechanism can be used to passively balance the energy between the morphing structure and actuation system. Applying the energy balancing concept has the potential to improve the performance of the actuation system by reducing the external energy consumption. In the current study, the integration workflow for the passive energy balancing device is established and is adopted in a variable camber morphing wing. The design variables of the passive energy balancing system are optimised and the effects of the different parameters are discussed together with the adaptability of the passive energy balancing device when the load stiffness changes. An integrated demonstrator was also built to validate the mechanism by measuring the currents in the process of morphing actuation.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.