用于凝固过程中金属晶粒生长相场建模的深度算子网络代用工具

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Danielle Ciesielski, Yulan Li, Shenyang Hu, Ethan King, Jordan Corbey, Panos Stinis
{"title":"用于凝固过程中金属晶粒生长相场建模的深度算子网络代用工具","authors":"Danielle Ciesielski,&nbsp;Yulan Li,&nbsp;Shenyang Hu,&nbsp;Ethan King,&nbsp;Jordan Corbey,&nbsp;Panos Stinis","doi":"10.1016/j.commatsci.2024.113417","DOIUrl":null,"url":null,"abstract":"<div><div>A deep operator network (DeepONet) has been constructed that generates accurate representations of phase-field model simulations for evolving two dimensional metal grain morphology growing from melt. These representations serve as lower resolution, computationally efficient stand-ins for quick parameter space exploration of solutions to the Allen–Cahn equations that dictate the phase-field model simulations. The experimental target for the phase-field model is a uranium casting system cooling a 434 <span><math><mi>g</mi></math></span> uranium charge from a maximum temperature of 1400 °C at an average rate of 30 °<span><math><mfrac><mrow><mi>C</mi></mrow><mrow><mtext>min</mtext></mrow></mfrac></math></span>, traversing the crystallographic phases of the pure metal. Experimental parameters inform the phase-field model, whose higher resolution computational model solutions are used to train the DeepONet in a given parameter space with the aim of developing a faster, more efficient method for predicting the solidifying metal’s microstructure at different potential experimental values. The final DeepONet generates high accuracy, lower resolution predictions with cumulative relative approximation error over all timesteps of less than 0.5%, while ensuring solutions remain within physically feasible ranges. These relative error values are comparable with other state-of-the-art DeepONet models for microstructure evolution, while significantly reducing the amount of training data required. Training a convolutional neural network simultaneously with the DeepONet, enforcing realistic values at the complex metal grain boundaries, and mathematically encoding boundary conditions into the structure of the DeepONet improved prediction accuracy and computational efficiency over a standard DeepONet model.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113417"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep operator network surrogate for phase-field modeling of metal grain growth during solidification\",\"authors\":\"Danielle Ciesielski,&nbsp;Yulan Li,&nbsp;Shenyang Hu,&nbsp;Ethan King,&nbsp;Jordan Corbey,&nbsp;Panos Stinis\",\"doi\":\"10.1016/j.commatsci.2024.113417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A deep operator network (DeepONet) has been constructed that generates accurate representations of phase-field model simulations for evolving two dimensional metal grain morphology growing from melt. These representations serve as lower resolution, computationally efficient stand-ins for quick parameter space exploration of solutions to the Allen–Cahn equations that dictate the phase-field model simulations. The experimental target for the phase-field model is a uranium casting system cooling a 434 <span><math><mi>g</mi></math></span> uranium charge from a maximum temperature of 1400 °C at an average rate of 30 °<span><math><mfrac><mrow><mi>C</mi></mrow><mrow><mtext>min</mtext></mrow></mfrac></math></span>, traversing the crystallographic phases of the pure metal. Experimental parameters inform the phase-field model, whose higher resolution computational model solutions are used to train the DeepONet in a given parameter space with the aim of developing a faster, more efficient method for predicting the solidifying metal’s microstructure at different potential experimental values. The final DeepONet generates high accuracy, lower resolution predictions with cumulative relative approximation error over all timesteps of less than 0.5%, while ensuring solutions remain within physically feasible ranges. These relative error values are comparable with other state-of-the-art DeepONet models for microstructure evolution, while significantly reducing the amount of training data required. Training a convolutional neural network simultaneously with the DeepONet, enforcing realistic values at the complex metal grain boundaries, and mathematically encoding boundary conditions into the structure of the DeepONet improved prediction accuracy and computational efficiency over a standard DeepONet model.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"246 \",\"pages\":\"Article 113417\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006384\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006384","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个深度算子网络(DeepONet),可生成相场模型模拟的精确表征,用于分析从熔体中生长出来的二维金属晶粒形态。这些表示可作为分辨率较低、计算效率较高的替身,用于快速探索决定相场模型模拟的艾伦-卡恩方程的参数空间解。相场模型的实验目标是一个铀铸造系统,以平均每分钟 30°C 的速度将 434 克铀装料从 1400°C 的最高温度冷却下来,穿越纯金属的结晶相。实验参数为相场模型提供了信息,而相场模型的高分辨率计算模型解则用于在给定参数空间内训练 DeepONet,目的是开发一种更快、更有效的方法,在不同的潜在实验值下预测凝固金属的微观结构。最终的 DeepONet 可生成高精度、低分辨率的预测结果,所有时间步长的累计相对近似误差小于 0.5%,同时确保解决方案保持在物理可行范围内。这些相对误差值与其他最先进的微结构演化 DeepONet 模型相当,同时大大减少了所需的训练数据量。与标准 DeepONet 模型相比,同时训练卷积神经网络和 DeepONet、在复杂金属晶粒边界强制执行现实值,以及将边界条件数学化编码到 DeepONet 结构中,提高了预测精度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep operator network surrogate for phase-field modeling of metal grain growth during solidification

Deep operator network surrogate for phase-field modeling of metal grain growth during solidification
A deep operator network (DeepONet) has been constructed that generates accurate representations of phase-field model simulations for evolving two dimensional metal grain morphology growing from melt. These representations serve as lower resolution, computationally efficient stand-ins for quick parameter space exploration of solutions to the Allen–Cahn equations that dictate the phase-field model simulations. The experimental target for the phase-field model is a uranium casting system cooling a 434 g uranium charge from a maximum temperature of 1400 °C at an average rate of 30 °Cmin, traversing the crystallographic phases of the pure metal. Experimental parameters inform the phase-field model, whose higher resolution computational model solutions are used to train the DeepONet in a given parameter space with the aim of developing a faster, more efficient method for predicting the solidifying metal’s microstructure at different potential experimental values. The final DeepONet generates high accuracy, lower resolution predictions with cumulative relative approximation error over all timesteps of less than 0.5%, while ensuring solutions remain within physically feasible ranges. These relative error values are comparable with other state-of-the-art DeepONet models for microstructure evolution, while significantly reducing the amount of training data required. Training a convolutional neural network simultaneously with the DeepONet, enforcing realistic values at the complex metal grain boundaries, and mathematically encoding boundary conditions into the structure of the DeepONet improved prediction accuracy and computational efficiency over a standard DeepONet model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信