在统一的物理模型描述下预测不同的再结晶质地

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Konstantina Traka , Estefanía Sepúlveda Hernández , Tuan Nguyen-Minh , Karo Sedighiani , Jilt Sietsma , Leo A.I. Kestens
{"title":"在统一的物理模型描述下预测不同的再结晶质地","authors":"Konstantina Traka ,&nbsp;Estefanía Sepúlveda Hernández ,&nbsp;Tuan Nguyen-Minh ,&nbsp;Karo Sedighiani ,&nbsp;Jilt Sietsma ,&nbsp;Leo A.I. Kestens","doi":"10.1016/j.commatsci.2024.113425","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the formation of the recrystallisation microstructure and texture of various single-phase ferrite low-carbon steels that were rolled at different temperatures and of which the deformation microstructure was characterized by high resolution electron backscatter diffraction (EBSD). Three cases are considered: (i) cold-rolled interstitial-free (IF) steel, warm-rolled IF steel at 550 <span><math><mtext>°C</mtext></math></span> and warm rolled Fe-Si steel at 900 <span><math><mtext>°C</mtext></math></span> (below the austenitization temperature due to Si). It is well-known that the deformation texture after flat rolling of single-ferrite low carbon steels exhibits the characteristic <span><math><mi>α</mi></math></span>/<span><math><mi>γ</mi></math></span>-fiber texture, i.e. <span><math><mrow><mo>&lt;</mo><mn>110</mn><mo>&gt;</mo></mrow></math></span>//Rolling Direction (RD) and <span><math><mrow><mo>&lt;</mo><mn>111</mn><mo>&gt;</mo></mrow></math></span>//Normal Direction (ND), irrespective of the rolling temperature, as long as there is no concurrent phase transformation. However, different recrystallisation textures appear as a function of the rolling temperature. Generally speaking, the <span><math><mi>γ</mi></math></span>-fiber recrystallisation texture is obtained after cold rolling, whereas the <span><math><mi>θ</mi></math></span>-fiber components ( <span><math><mrow><mo>&lt;</mo><mn>100</mn><mo>&gt;</mo></mrow></math></span>//ND) intensify at the expense of the <span><math><mi>γ</mi></math></span>-fiber orientations with increasing rolling temperature. Although these phenomena are well-known, the reasons for this behavior in terms of preferential orientation selection remain as yet unclear. In the present paper, recrystallisation microstructures and textures are simulated with a full-field cellular-automaton (CA) description, whereby recrystallisation from its incipient stage is considered as a process of sub-grain coarsening controlled by the well-known physical laws of driving force and kinetics. The simulations integrate in one single model the various conditions that give rise to the observed temperature dependence of the evolving static recrystallisation texture and microstructure. The different rolling temperatures will give rise to different initial microstructures at the onset of recrystallisation with noticeable variations in short-range orientation gradients in <span><math><mi>γ</mi></math></span> and <span><math><mi>θ</mi></math></span>-fiber orientations, respectively. The mere application of local grain-boundary migration laws on the topology of the deformation structure, without imposing any specific nucleation selection criterion, will properly balance the dominance of <span><math><mi>γ</mi></math></span>-fiber grains after cold-rolling and <span><math><mi>θ</mi></math></span>-fiber orientations after warm rolling. Finally, the well-known nucleation of Goss orientations (<span><math><mrow><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mo>&lt;</mo><mn>001</mn><mo>&gt;</mo></mrow></math></span>) in shear bands occurring in <span><math><mi>γ</mi></math></span>-fiber grains is also simulated in this single conceptual framework.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113425"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of different recrystallisation textures under a single unified physics-based model description\",\"authors\":\"Konstantina Traka ,&nbsp;Estefanía Sepúlveda Hernández ,&nbsp;Tuan Nguyen-Minh ,&nbsp;Karo Sedighiani ,&nbsp;Jilt Sietsma ,&nbsp;Leo A.I. Kestens\",\"doi\":\"10.1016/j.commatsci.2024.113425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the formation of the recrystallisation microstructure and texture of various single-phase ferrite low-carbon steels that were rolled at different temperatures and of which the deformation microstructure was characterized by high resolution electron backscatter diffraction (EBSD). Three cases are considered: (i) cold-rolled interstitial-free (IF) steel, warm-rolled IF steel at 550 <span><math><mtext>°C</mtext></math></span> and warm rolled Fe-Si steel at 900 <span><math><mtext>°C</mtext></math></span> (below the austenitization temperature due to Si). It is well-known that the deformation texture after flat rolling of single-ferrite low carbon steels exhibits the characteristic <span><math><mi>α</mi></math></span>/<span><math><mi>γ</mi></math></span>-fiber texture, i.e. <span><math><mrow><mo>&lt;</mo><mn>110</mn><mo>&gt;</mo></mrow></math></span>//Rolling Direction (RD) and <span><math><mrow><mo>&lt;</mo><mn>111</mn><mo>&gt;</mo></mrow></math></span>//Normal Direction (ND), irrespective of the rolling temperature, as long as there is no concurrent phase transformation. However, different recrystallisation textures appear as a function of the rolling temperature. Generally speaking, the <span><math><mi>γ</mi></math></span>-fiber recrystallisation texture is obtained after cold rolling, whereas the <span><math><mi>θ</mi></math></span>-fiber components ( <span><math><mrow><mo>&lt;</mo><mn>100</mn><mo>&gt;</mo></mrow></math></span>//ND) intensify at the expense of the <span><math><mi>γ</mi></math></span>-fiber orientations with increasing rolling temperature. Although these phenomena are well-known, the reasons for this behavior in terms of preferential orientation selection remain as yet unclear. In the present paper, recrystallisation microstructures and textures are simulated with a full-field cellular-automaton (CA) description, whereby recrystallisation from its incipient stage is considered as a process of sub-grain coarsening controlled by the well-known physical laws of driving force and kinetics. The simulations integrate in one single model the various conditions that give rise to the observed temperature dependence of the evolving static recrystallisation texture and microstructure. The different rolling temperatures will give rise to different initial microstructures at the onset of recrystallisation with noticeable variations in short-range orientation gradients in <span><math><mi>γ</mi></math></span> and <span><math><mi>θ</mi></math></span>-fiber orientations, respectively. The mere application of local grain-boundary migration laws on the topology of the deformation structure, without imposing any specific nucleation selection criterion, will properly balance the dominance of <span><math><mi>γ</mi></math></span>-fiber grains after cold-rolling and <span><math><mi>θ</mi></math></span>-fiber orientations after warm rolling. Finally, the well-known nucleation of Goss orientations (<span><math><mrow><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mo>&lt;</mo><mn>001</mn><mo>&gt;</mo></mrow></math></span>) in shear bands occurring in <span><math><mi>γ</mi></math></span>-fiber grains is also simulated in this single conceptual framework.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"246 \",\"pages\":\"Article 113425\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006463\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006463","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在不同温度下轧制的各种单相铁素体低碳钢的再结晶显微组织和纹理的形成,并通过高分辨率电子反向散射衍射(EBSD)对其变形显微组织进行了表征。本文考虑了三种情况:(i) 冷轧无间隙钢 (IF)、550 ℃ 温轧 IF 钢和 900 ℃ 温轧铁硅钢(低于硅的奥氏体化温度)。众所周知,只要不同时发生相变,单铁素体低碳钢平轧后的变形纹理表现出特征性的α/γ纤维纹理,即<110>/轧制方向(RD)和<111>//正常方向(ND),与轧制温度无关。然而,不同的再结晶纹理会随轧制温度的变化而变化。一般来说,冷轧后会出现γ纤维再结晶纹理,而随着轧制温度的升高,θ纤维成分(<100>//ND)会增强,而γ纤维取向则会减弱。虽然这些现象已广为人知,但造成这种优先取向选择行为的原因仍不清楚。本文采用全场蜂窝-自动机(CA)描述来模拟再结晶的微观结构和纹理,将再结晶从萌芽阶段开始视为亚晶粒粗化过程,由众所周知的驱动力和动力学物理定律控制。模拟将导致观察到的静态再结晶纹理和微观结构随温度变化的各种条件整合到一个模型中。不同的轧制温度会在再结晶开始时产生不同的初始微观结构,γ 和 θ 纤维取向的短程取向梯度也会分别产生明显的变化。仅对变形结构的拓扑应用局部晶界迁移规律,而不施加任何特定的成核选择标准,就能适当平衡冷轧后的γ纤维晶粒和热轧后的θ纤维取向。最后,众所周知的 Goss 取向({110}<001>)在 γ 纤维晶粒中出现的剪切带中的成核现象也在此单一概念框架中进行了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of different recrystallisation textures under a single unified physics-based model description

Prediction of different recrystallisation textures under a single unified physics-based model description
This work investigates the formation of the recrystallisation microstructure and texture of various single-phase ferrite low-carbon steels that were rolled at different temperatures and of which the deformation microstructure was characterized by high resolution electron backscatter diffraction (EBSD). Three cases are considered: (i) cold-rolled interstitial-free (IF) steel, warm-rolled IF steel at 550 °C and warm rolled Fe-Si steel at 900 °C (below the austenitization temperature due to Si). It is well-known that the deformation texture after flat rolling of single-ferrite low carbon steels exhibits the characteristic α/γ-fiber texture, i.e. <110>//Rolling Direction (RD) and <111>//Normal Direction (ND), irrespective of the rolling temperature, as long as there is no concurrent phase transformation. However, different recrystallisation textures appear as a function of the rolling temperature. Generally speaking, the γ-fiber recrystallisation texture is obtained after cold rolling, whereas the θ-fiber components ( <100>//ND) intensify at the expense of the γ-fiber orientations with increasing rolling temperature. Although these phenomena are well-known, the reasons for this behavior in terms of preferential orientation selection remain as yet unclear. In the present paper, recrystallisation microstructures and textures are simulated with a full-field cellular-automaton (CA) description, whereby recrystallisation from its incipient stage is considered as a process of sub-grain coarsening controlled by the well-known physical laws of driving force and kinetics. The simulations integrate in one single model the various conditions that give rise to the observed temperature dependence of the evolving static recrystallisation texture and microstructure. The different rolling temperatures will give rise to different initial microstructures at the onset of recrystallisation with noticeable variations in short-range orientation gradients in γ and θ-fiber orientations, respectively. The mere application of local grain-boundary migration laws on the topology of the deformation structure, without imposing any specific nucleation selection criterion, will properly balance the dominance of γ-fiber grains after cold-rolling and θ-fiber orientations after warm rolling. Finally, the well-known nucleation of Goss orientations ({110}<001>) in shear bands occurring in γ-fiber grains is also simulated in this single conceptual framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信