Kenneth M. Peterson , Michelle Harr , Adam Pilchak , S. Lee Semiatin , Nathan Levkulich , Jacob Ruff , Darren C. Pagan
{"title":"单调加载和循环加载过程中 Ti-6Al-4V 晶粒邻域内应力再分布的三维原位观测","authors":"Kenneth M. Peterson , Michelle Harr , Adam Pilchak , S. Lee Semiatin , Nathan Levkulich , Jacob Ruff , Darren C. Pagan","doi":"10.1016/j.ijfatigue.2024.108630","DOIUrl":null,"url":null,"abstract":"<div><div>Grain-scale stress redistribution events are characterized within the Ti-6Al-4V (Ti64) hexagonal close-packed <span><math><mi>α</mi></math></span> phase using far-field high-energy X-ray diffraction microscopy. Specimens were deformed in monotonic uniaxial tension and under cyclic tensile loading with approximately 7000 grains probed in each specimen. Analyses focused on the evolution of the resolved shear stresses applied to the basal <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span>, prismatic <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span>, and pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems, as well as normal stresses applied to basal planes, within individual grains. Slip system softening is observed in the basal <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span> and prismatic <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems across the ensemble, while hardening is observed for the pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems during both monotonic and cyclic loading. In addition, discrete stress redistribution events in which increases of normal stresses in grains not favorably oriented for slip that may lead to crack initiation are analyzed. It is observed that these increases in normal stresses are correlated to crystallographic slip in multiple neighboring grains favorably oriented for slip.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108630"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D in situ observations of stress redistribution in Ti-6Al-4V within rogue grain neighborhoods during monotonic and cyclic loading\",\"authors\":\"Kenneth M. Peterson , Michelle Harr , Adam Pilchak , S. Lee Semiatin , Nathan Levkulich , Jacob Ruff , Darren C. Pagan\",\"doi\":\"10.1016/j.ijfatigue.2024.108630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain-scale stress redistribution events are characterized within the Ti-6Al-4V (Ti64) hexagonal close-packed <span><math><mi>α</mi></math></span> phase using far-field high-energy X-ray diffraction microscopy. Specimens were deformed in monotonic uniaxial tension and under cyclic tensile loading with approximately 7000 grains probed in each specimen. Analyses focused on the evolution of the resolved shear stresses applied to the basal <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span>, prismatic <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span>, and pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems, as well as normal stresses applied to basal planes, within individual grains. Slip system softening is observed in the basal <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span> and prismatic <span><math><mrow><mo>〈</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems across the ensemble, while hardening is observed for the pyramidal <span><math><mrow><mo>〈</mo><mi>c</mi><mo>+</mo><mi>a</mi><mo>〉</mo></mrow></math></span> slip systems during both monotonic and cyclic loading. In addition, discrete stress redistribution events in which increases of normal stresses in grains not favorably oriented for slip that may lead to crack initiation are analyzed. It is observed that these increases in normal stresses are correlated to crystallographic slip in multiple neighboring grains favorably oriented for slip.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108630\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004894\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004894","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用远场高能 X 射线衍射显微镜研究了 Ti-6Al-4V (Ti64) 六方紧密堆积 α 相中晶粒尺度应力再分布事件的特征。试样在单调单轴拉伸和循环拉伸载荷下变形,每个试样中探测了约 7000 个晶粒。分析的重点是单个晶粒内施加于基面〈a〉、棱柱形〈a〉和金字塔形〈c+a〉滑移系统的分辨剪应力以及施加于基面的法向应力的演变。在整个组合中,基面〈a〉和棱柱形〈a〉滑移系统都出现了软化现象,而在单调和循环加载过程中,金字塔形〈c+a〉滑移系统都出现了硬化现象。此外,还分析了离散应力再分布事件,在这些事件中,不利于滑移的晶粒法向应力增加,可能导致裂纹萌生。据观察,这些法向应力的增加与多个相邻晶粒的结晶滑移相关,而这些晶粒的滑移方向有利于滑移。
3D in situ observations of stress redistribution in Ti-6Al-4V within rogue grain neighborhoods during monotonic and cyclic loading
Grain-scale stress redistribution events are characterized within the Ti-6Al-4V (Ti64) hexagonal close-packed phase using far-field high-energy X-ray diffraction microscopy. Specimens were deformed in monotonic uniaxial tension and under cyclic tensile loading with approximately 7000 grains probed in each specimen. Analyses focused on the evolution of the resolved shear stresses applied to the basal , prismatic , and pyramidal slip systems, as well as normal stresses applied to basal planes, within individual grains. Slip system softening is observed in the basal and prismatic slip systems across the ensemble, while hardening is observed for the pyramidal slip systems during both monotonic and cyclic loading. In addition, discrete stress redistribution events in which increases of normal stresses in grains not favorably oriented for slip that may lead to crack initiation are analyzed. It is observed that these increases in normal stresses are correlated to crystallographic slip in multiple neighboring grains favorably oriented for slip.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.