{"title":"用空心玻璃微球增强的铝基复合材料的疲劳裂纹增长率特性","authors":"Karthick Ganesan , Ganesan Somasundaram Marimuthu , Shekhar Hansda , Vasantha Kumar Ramesh , Satheesh Mani , Balaji Thangapandi","doi":"10.1016/j.ijfatigue.2024.108628","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates nanoindentation and fatigue crack growth rates of pure aluminium and aluminium hollow glass microsphere metal matrix composite (Al + HGM MMCs) cast plates. Using the stir casting method, pure aluminium, and Al + HGM MMCs were fabricated with hollow glass microsphere (HGM) additions ranging from 5 % to 30 % by weight. Nanoindentation techniques were utilized to assess fundamental mechanical properties such as hardness and elastic modulus. This study primarily focuses on analyzing fatigue crack growth behaviour within the linear region of da/dN vs. ΔK graphs for these stir-cast plates. Chevron-notch CT specimens were prepared following ASTM E-647 standards, and the constant amplitude increasing ΔK method was employed to generate Paris curves. Furthermore, the research investigated the influence of stress ratios (R=0.1, 0.2, and 0.3) on the fatigue crack growth rate in both Pure Al and Al + HGM MMCs. The study also determined the threshold and critical stress intensity factor ranges (ΔK<sub>th</sub> and ΔK<sub>c</sub>) for these plates. Additionally, Paris constants (C, m) were calculated to characterize the fatigue behaviour of the cast plates. X-ray diffraction analysis was conducted to reveal dislocation densities, crystalline sizes, and micro-strain responses of the fatigue-fractured specimens. Moreover, SEM fractography analysis provided insights into the fracture behaviour and crack branching observed in both pure aluminium and Al + HGM MMCs plates.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108628"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue crack growth rate behaviour of aluminium matrix composites reinforced with hollow glass microsphere\",\"authors\":\"Karthick Ganesan , Ganesan Somasundaram Marimuthu , Shekhar Hansda , Vasantha Kumar Ramesh , Satheesh Mani , Balaji Thangapandi\",\"doi\":\"10.1016/j.ijfatigue.2024.108628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates nanoindentation and fatigue crack growth rates of pure aluminium and aluminium hollow glass microsphere metal matrix composite (Al + HGM MMCs) cast plates. Using the stir casting method, pure aluminium, and Al + HGM MMCs were fabricated with hollow glass microsphere (HGM) additions ranging from 5 % to 30 % by weight. Nanoindentation techniques were utilized to assess fundamental mechanical properties such as hardness and elastic modulus. This study primarily focuses on analyzing fatigue crack growth behaviour within the linear region of da/dN vs. ΔK graphs for these stir-cast plates. Chevron-notch CT specimens were prepared following ASTM E-647 standards, and the constant amplitude increasing ΔK method was employed to generate Paris curves. Furthermore, the research investigated the influence of stress ratios (R=0.1, 0.2, and 0.3) on the fatigue crack growth rate in both Pure Al and Al + HGM MMCs. The study also determined the threshold and critical stress intensity factor ranges (ΔK<sub>th</sub> and ΔK<sub>c</sub>) for these plates. Additionally, Paris constants (C, m) were calculated to characterize the fatigue behaviour of the cast plates. X-ray diffraction analysis was conducted to reveal dislocation densities, crystalline sizes, and micro-strain responses of the fatigue-fractured specimens. Moreover, SEM fractography analysis provided insights into the fracture behaviour and crack branching observed in both pure aluminium and Al + HGM MMCs plates.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108628\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004870\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004870","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fatigue crack growth rate behaviour of aluminium matrix composites reinforced with hollow glass microsphere
This study investigates nanoindentation and fatigue crack growth rates of pure aluminium and aluminium hollow glass microsphere metal matrix composite (Al + HGM MMCs) cast plates. Using the stir casting method, pure aluminium, and Al + HGM MMCs were fabricated with hollow glass microsphere (HGM) additions ranging from 5 % to 30 % by weight. Nanoindentation techniques were utilized to assess fundamental mechanical properties such as hardness and elastic modulus. This study primarily focuses on analyzing fatigue crack growth behaviour within the linear region of da/dN vs. ΔK graphs for these stir-cast plates. Chevron-notch CT specimens were prepared following ASTM E-647 standards, and the constant amplitude increasing ΔK method was employed to generate Paris curves. Furthermore, the research investigated the influence of stress ratios (R=0.1, 0.2, and 0.3) on the fatigue crack growth rate in both Pure Al and Al + HGM MMCs. The study also determined the threshold and critical stress intensity factor ranges (ΔKth and ΔKc) for these plates. Additionally, Paris constants (C, m) were calculated to characterize the fatigue behaviour of the cast plates. X-ray diffraction analysis was conducted to reveal dislocation densities, crystalline sizes, and micro-strain responses of the fatigue-fractured specimens. Moreover, SEM fractography analysis provided insights into the fracture behaviour and crack branching observed in both pure aluminium and Al + HGM MMCs plates.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.