通用气体爆轰动力学

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Qiang Xiao , Qibin Zhang , Ashwin Chinnayya
{"title":"通用气体爆轰动力学","authors":"Qiang Xiao ,&nbsp;Qibin Zhang ,&nbsp;Ashwin Chinnayya","doi":"10.1016/j.combustflame.2024.113757","DOIUrl":null,"url":null,"abstract":"<div><div>The present communication proposes a new scaling approach to unify the dynamics of gaseous detonations subject to wall losses in both the narrow channels and small tubes, by compiling the published experimental data of detonations in 23 different mixtures with a very large range of cellular instabilities. A kinetic induction length <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub></math></span> can be determined from the detonation velocity deficit and detailed chemistry. In order to take into account the sensitivity of the latter length to post-shock temperature fluctuations (through the reduced activation energy <span><math><mi>θ</mi></math></span>), which is a partial and indirect marker of the cellular structure, and to bring out energetics (through the Chapman–Jouguet detonation Mach number <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow></msub></math></span>), an effective kinetic length of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mo>/</mo><msup><mrow><mi>θ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> was built and has been shown to collapse the different detonation dynamics of various gaseous mixtures, subjected to wall losses, into a single universal curve for detonation velocity deficits.</div><div><strong>Novelty and Significance:</strong> Scaling analysis of large sets of published data of gaseous detonation experiments in narrow channels and small tubes has been made for 23 different mixtures with varied cellular instabilities and activation energies. The universal dynamics of gaseous detonations subject to wall losses in different mixtures has been achieved, for the first time, by adopting an effective kinetic length by taking into account the effect of both the activation energy and the energetics.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113757"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The universal gaseous detonation dynamics\",\"authors\":\"Qiang Xiao ,&nbsp;Qibin Zhang ,&nbsp;Ashwin Chinnayya\",\"doi\":\"10.1016/j.combustflame.2024.113757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present communication proposes a new scaling approach to unify the dynamics of gaseous detonations subject to wall losses in both the narrow channels and small tubes, by compiling the published experimental data of detonations in 23 different mixtures with a very large range of cellular instabilities. A kinetic induction length <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub></math></span> can be determined from the detonation velocity deficit and detailed chemistry. In order to take into account the sensitivity of the latter length to post-shock temperature fluctuations (through the reduced activation energy <span><math><mi>θ</mi></math></span>), which is a partial and indirect marker of the cellular structure, and to bring out energetics (through the Chapman–Jouguet detonation Mach number <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow></msub></math></span>), an effective kinetic length of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>C</mi><mi>J</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mo>/</mo><msup><mrow><mi>θ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> was built and has been shown to collapse the different detonation dynamics of various gaseous mixtures, subjected to wall losses, into a single universal curve for detonation velocity deficits.</div><div><strong>Novelty and Significance:</strong> Scaling analysis of large sets of published data of gaseous detonation experiments in narrow channels and small tubes has been made for 23 different mixtures with varied cellular instabilities and activation energies. The universal dynamics of gaseous detonations subject to wall losses in different mixtures has been achieved, for the first time, by adopting an effective kinetic length by taking into account the effect of both the activation energy and the energetics.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"270 \",\"pages\":\"Article 113757\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004668\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004668","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本论文通过汇编已发表的 23 种不同混合物的爆轰实验数据,提出了一种新的缩放方法,以统一受窄通道和小管道壁面损失影响的气体爆轰动力学。可以根据爆速损失和详细的化学成分确定动力学感应长度 Δi,损失。为了考虑后一长度对爆震后温度波动的敏感性(通过降低的活化能θ)(这是细胞结构的部分和间接标记),同时也为了突出能量(通过查普曼-朱盖特爆震马赫数MCJ)、建立了Δi,loss(MCJ4/θ3)的有效动力学长度,并已证明可将各种气体混合物在壁面损失作用下的不同爆轰动力学特性折叠成单一的爆轰速度损失通用曲线。新颖性和意义:对已公布的窄通道和小管道中气体爆轰实验的大量数据进行了缩放分析,这些数据适用于 23 种具有不同细胞不稳定性和活化能的不同混合物。通过采用有效动能长度,同时考虑活化能和能量学的影响,首次实现了不同混合物中受壁面损失影响的气体爆轰的通用动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The universal gaseous detonation dynamics
The present communication proposes a new scaling approach to unify the dynamics of gaseous detonations subject to wall losses in both the narrow channels and small tubes, by compiling the published experimental data of detonations in 23 different mixtures with a very large range of cellular instabilities. A kinetic induction length Δi,loss can be determined from the detonation velocity deficit and detailed chemistry. In order to take into account the sensitivity of the latter length to post-shock temperature fluctuations (through the reduced activation energy θ), which is a partial and indirect marker of the cellular structure, and to bring out energetics (through the Chapman–Jouguet detonation Mach number MCJ), an effective kinetic length of Δi,loss(MCJ4/θ3) was built and has been shown to collapse the different detonation dynamics of various gaseous mixtures, subjected to wall losses, into a single universal curve for detonation velocity deficits.
Novelty and Significance: Scaling analysis of large sets of published data of gaseous detonation experiments in narrow channels and small tubes has been made for 23 different mixtures with varied cellular instabilities and activation energies. The universal dynamics of gaseous detonations subject to wall losses in different mixtures has been achieved, for the first time, by adopting an effective kinetic length by taking into account the effect of both the activation energy and the energetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信