Sultan J. Alsufyani , M.F. Zaki , T.S. Soliman , Nadi Mlihan Alresheedi , Tayseer I. Al-Naggar
{"title":"伽马辐射诱导定制超高分子量聚乙烯的结构、光学、表面和机械性能","authors":"Sultan J. Alsufyani , M.F. Zaki , T.S. Soliman , Nadi Mlihan Alresheedi , Tayseer I. Al-Naggar","doi":"10.1016/j.pnucene.2024.105481","DOIUrl":null,"url":null,"abstract":"<div><div>The present investigation examined how the resultant gamma radiation affected the ultra-high molecular weight polyethylene's (UHMWPE) mechanical, optical, surface, and structural characteristics. Different gamma doses of 75, 150, 250, and 350 kGy were applied to the UHMWPE samples. The study of physical and chemical qualities has involved a variety of spectroscopy techniques, including Fourier Transform Infrared spectroscopy, X-ray diffraction, mechanical property changes, and biocompatibility properties. New bands are formed, as indicated by FT-IR analysis, and this process is linked to the oxidation of irradiation polymer chains and the production of carbon dioxide. The crystallinity of irradiated samples increases as the gamma radiation increases, according to XRD patterns. The analyzed optical results exhibit improvements in the optical characteristics of the irradiated samples. The absorbance spectra of the irradiated samples showed a shift toward the high of wavelength values in the absorption edge as compared to the pristine sample. On the other hand, the optical absorption edge has an increasing tendency as the dose of gamma-ray radiation is increased. As the gamma-ray dose increases, the absorption edge moves toward the longer wavelength. The measurements of the contact angle indicate that the surface free energy rises with increasing gamma irradiation. It was detailed how the mechanical properties of the irradiated UHMWPE samples were measured. The mechanical measurements indicate that the mechanical properties are dose-dependent to some extent. Furthermore, as gamma doses rise, so does the hardness of irradiated UHMWPE.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105481"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma radiation induced tailoring the structural, optical, surface and mechanical properties of UHMWPE\",\"authors\":\"Sultan J. Alsufyani , M.F. Zaki , T.S. Soliman , Nadi Mlihan Alresheedi , Tayseer I. Al-Naggar\",\"doi\":\"10.1016/j.pnucene.2024.105481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present investigation examined how the resultant gamma radiation affected the ultra-high molecular weight polyethylene's (UHMWPE) mechanical, optical, surface, and structural characteristics. Different gamma doses of 75, 150, 250, and 350 kGy were applied to the UHMWPE samples. The study of physical and chemical qualities has involved a variety of spectroscopy techniques, including Fourier Transform Infrared spectroscopy, X-ray diffraction, mechanical property changes, and biocompatibility properties. New bands are formed, as indicated by FT-IR analysis, and this process is linked to the oxidation of irradiation polymer chains and the production of carbon dioxide. The crystallinity of irradiated samples increases as the gamma radiation increases, according to XRD patterns. The analyzed optical results exhibit improvements in the optical characteristics of the irradiated samples. The absorbance spectra of the irradiated samples showed a shift toward the high of wavelength values in the absorption edge as compared to the pristine sample. On the other hand, the optical absorption edge has an increasing tendency as the dose of gamma-ray radiation is increased. As the gamma-ray dose increases, the absorption edge moves toward the longer wavelength. The measurements of the contact angle indicate that the surface free energy rises with increasing gamma irradiation. It was detailed how the mechanical properties of the irradiated UHMWPE samples were measured. The mechanical measurements indicate that the mechanical properties are dose-dependent to some extent. Furthermore, as gamma doses rise, so does the hardness of irradiated UHMWPE.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"177 \",\"pages\":\"Article 105481\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004311\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Gamma radiation induced tailoring the structural, optical, surface and mechanical properties of UHMWPE
The present investigation examined how the resultant gamma radiation affected the ultra-high molecular weight polyethylene's (UHMWPE) mechanical, optical, surface, and structural characteristics. Different gamma doses of 75, 150, 250, and 350 kGy were applied to the UHMWPE samples. The study of physical and chemical qualities has involved a variety of spectroscopy techniques, including Fourier Transform Infrared spectroscopy, X-ray diffraction, mechanical property changes, and biocompatibility properties. New bands are formed, as indicated by FT-IR analysis, and this process is linked to the oxidation of irradiation polymer chains and the production of carbon dioxide. The crystallinity of irradiated samples increases as the gamma radiation increases, according to XRD patterns. The analyzed optical results exhibit improvements in the optical characteristics of the irradiated samples. The absorbance spectra of the irradiated samples showed a shift toward the high of wavelength values in the absorption edge as compared to the pristine sample. On the other hand, the optical absorption edge has an increasing tendency as the dose of gamma-ray radiation is increased. As the gamma-ray dose increases, the absorption edge moves toward the longer wavelength. The measurements of the contact angle indicate that the surface free energy rises with increasing gamma irradiation. It was detailed how the mechanical properties of the irradiated UHMWPE samples were measured. The mechanical measurements indicate that the mechanical properties are dose-dependent to some extent. Furthermore, as gamma doses rise, so does the hardness of irradiated UHMWPE.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.