Kerong Guo , Yang Li , Houjun Gong , Yuanfeng Zan , Zumao Yang , Yanping Huang
{"title":"洛伦兹力对电磁冷坩埚中核反应堆堆芯熔体分层的影响研究","authors":"Kerong Guo , Yang Li , Houjun Gong , Yuanfeng Zan , Zumao Yang , Yanping Huang","doi":"10.1016/j.pnucene.2024.105475","DOIUrl":null,"url":null,"abstract":"<div><div>To understand the effect of the Lorentz force on core melt stratification during experiments, a multi-physical field coupling model of electromagnetic induction, non-isothermal flow, and two-phase flow is established in this paper. The evolution of the layered core melt in the electromagnetic cold crucible is studied for different relative densities and phase volume fraction ratios between metal and oxide. The calculation results show that the coupling model can accurately describe the structural evolution of core melt. The Lorentz force cannot change the relative positions of the metal and oxide, but it can significantly affect the morphology of the core melt. If the density of the metal is less than that of the oxide, the Lorentz force causes the light metal with a small phase volume fraction to form a hemispherical shape in the top center of the crucible. As the phase volume fraction increases, the Lorentz force become weaker than those of gravity and buoyancy. The light metal is then flat. When the metal density is greater than the oxide density, the Lorentz force causes the heavy metal with a small phase volume fraction to appear as a hemisphere, but causes the heavy metal with a large phase volume fraction to appear as an ellipsoid in the lower part of the crucible.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105475"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the effect of Lorentz force on the nuclear reactor core melt stratification in electromagnetic cold crucible\",\"authors\":\"Kerong Guo , Yang Li , Houjun Gong , Yuanfeng Zan , Zumao Yang , Yanping Huang\",\"doi\":\"10.1016/j.pnucene.2024.105475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To understand the effect of the Lorentz force on core melt stratification during experiments, a multi-physical field coupling model of electromagnetic induction, non-isothermal flow, and two-phase flow is established in this paper. The evolution of the layered core melt in the electromagnetic cold crucible is studied for different relative densities and phase volume fraction ratios between metal and oxide. The calculation results show that the coupling model can accurately describe the structural evolution of core melt. The Lorentz force cannot change the relative positions of the metal and oxide, but it can significantly affect the morphology of the core melt. If the density of the metal is less than that of the oxide, the Lorentz force causes the light metal with a small phase volume fraction to form a hemispherical shape in the top center of the crucible. As the phase volume fraction increases, the Lorentz force become weaker than those of gravity and buoyancy. The light metal is then flat. When the metal density is greater than the oxide density, the Lorentz force causes the heavy metal with a small phase volume fraction to appear as a hemisphere, but causes the heavy metal with a large phase volume fraction to appear as an ellipsoid in the lower part of the crucible.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"177 \",\"pages\":\"Article 105475\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004256\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Study on the effect of Lorentz force on the nuclear reactor core melt stratification in electromagnetic cold crucible
To understand the effect of the Lorentz force on core melt stratification during experiments, a multi-physical field coupling model of electromagnetic induction, non-isothermal flow, and two-phase flow is established in this paper. The evolution of the layered core melt in the electromagnetic cold crucible is studied for different relative densities and phase volume fraction ratios between metal and oxide. The calculation results show that the coupling model can accurately describe the structural evolution of core melt. The Lorentz force cannot change the relative positions of the metal and oxide, but it can significantly affect the morphology of the core melt. If the density of the metal is less than that of the oxide, the Lorentz force causes the light metal with a small phase volume fraction to form a hemispherical shape in the top center of the crucible. As the phase volume fraction increases, the Lorentz force become weaker than those of gravity and buoyancy. The light metal is then flat. When the metal density is greater than the oxide density, the Lorentz force causes the heavy metal with a small phase volume fraction to appear as a hemisphere, but causes the heavy metal with a large phase volume fraction to appear as an ellipsoid in the lower part of the crucible.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.