Qian Li , Shujing Zhang , Qinghong Zhou , Chenxi Gu , Yinghua Liu , Jing Zhang , Jingshu Zhang
{"title":"生育三烯酚在小鼠结直肠癌模型中通过 TLR4 信号传导抑制结肠炎相关癌症进展","authors":"Qian Li , Shujing Zhang , Qinghong Zhou , Chenxi Gu , Yinghua Liu , Jing Zhang , Jingshu Zhang","doi":"10.1016/j.crtox.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate the preventive efficacy of tocotrienol in inhibiting the nuclear factor-kappa B (NF-κB) mediated inflammation pathways in colorectal cancer. We utilized the azoxymethane (AOM) and dextran sulfate sodium salt (DSS) to induce colitis-associated colorectal cancer (CAC) mice model. In generating a CAC model, mice were intraperitoneally injected with AOM at a concentration of 10 mg/kg body weight. Seven days after the AOM injection, mice drinking water containing 3 % DSS for 1 week, followed by a 2-week period of regular water. This cycle of DSS treatment (1-week 3 % DSS+2-week water) was repeated for two additional cycles. Mice were randomly divided into five groups (n = 20/group), including Blank group, Model group, three different dosages tocotrienol groups (Low dose group [50 mg/kg], Medium dose group [75 mg/kg], and High dose group [100 mg/kg]). The protective effects of tocotrienol were assessed using histological, flow cytometry, western blot and mouse Luminex assay. Compared with the blank group, expressions of toll-like receptor 4 (TLR4), myeloid differentiation protein 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6), NF-κB, Interleukin (IL)-6 and tumor necrosis factor (TNF) −α were increased in model group, while IL-4 and IL-10 were decreased in model group (<em>P</em><0.05). Tocotrienol prevented carcinogenesis and decreased the IL-6, TNF-α, MyD88, TLR4, TRAF-6 and NF-κB expression levels, compared with the model group (<em>P</em><0.05). Compared with the model group, the expression of IL-10 was increased in medium dose group and high dose group (<em>P</em><0.05). The protective effects of tocotrienol may be related to the inhibition of TLR4 /MyD88 /NF-κB mediated inflammatory signaling pathways. Therefore, the use of tocotrienol can improve the abnormal expression of cytokines in a mouse model of colorectal cancer and inhibit the occurrence and development of colorectal cancer.</div></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"7 ","pages":"Article 100196"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tocotrienol suppresses colitis-associated cancer progression through TLR4 signaling in a mouse model of colorectal cancer\",\"authors\":\"Qian Li , Shujing Zhang , Qinghong Zhou , Chenxi Gu , Yinghua Liu , Jing Zhang , Jingshu Zhang\",\"doi\":\"10.1016/j.crtox.2024.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to evaluate the preventive efficacy of tocotrienol in inhibiting the nuclear factor-kappa B (NF-κB) mediated inflammation pathways in colorectal cancer. We utilized the azoxymethane (AOM) and dextran sulfate sodium salt (DSS) to induce colitis-associated colorectal cancer (CAC) mice model. In generating a CAC model, mice were intraperitoneally injected with AOM at a concentration of 10 mg/kg body weight. Seven days after the AOM injection, mice drinking water containing 3 % DSS for 1 week, followed by a 2-week period of regular water. This cycle of DSS treatment (1-week 3 % DSS+2-week water) was repeated for two additional cycles. Mice were randomly divided into five groups (n = 20/group), including Blank group, Model group, three different dosages tocotrienol groups (Low dose group [50 mg/kg], Medium dose group [75 mg/kg], and High dose group [100 mg/kg]). The protective effects of tocotrienol were assessed using histological, flow cytometry, western blot and mouse Luminex assay. Compared with the blank group, expressions of toll-like receptor 4 (TLR4), myeloid differentiation protein 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6), NF-κB, Interleukin (IL)-6 and tumor necrosis factor (TNF) −α were increased in model group, while IL-4 and IL-10 were decreased in model group (<em>P</em><0.05). Tocotrienol prevented carcinogenesis and decreased the IL-6, TNF-α, MyD88, TLR4, TRAF-6 and NF-κB expression levels, compared with the model group (<em>P</em><0.05). Compared with the model group, the expression of IL-10 was increased in medium dose group and high dose group (<em>P</em><0.05). The protective effects of tocotrienol may be related to the inhibition of TLR4 /MyD88 /NF-κB mediated inflammatory signaling pathways. Therefore, the use of tocotrienol can improve the abnormal expression of cytokines in a mouse model of colorectal cancer and inhibit the occurrence and development of colorectal cancer.</div></div>\",\"PeriodicalId\":11236,\"journal\":{\"name\":\"Current Research in Toxicology\",\"volume\":\"7 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Tocotrienol suppresses colitis-associated cancer progression through TLR4 signaling in a mouse model of colorectal cancer
This study aimed to evaluate the preventive efficacy of tocotrienol in inhibiting the nuclear factor-kappa B (NF-κB) mediated inflammation pathways in colorectal cancer. We utilized the azoxymethane (AOM) and dextran sulfate sodium salt (DSS) to induce colitis-associated colorectal cancer (CAC) mice model. In generating a CAC model, mice were intraperitoneally injected with AOM at a concentration of 10 mg/kg body weight. Seven days after the AOM injection, mice drinking water containing 3 % DSS for 1 week, followed by a 2-week period of regular water. This cycle of DSS treatment (1-week 3 % DSS+2-week water) was repeated for two additional cycles. Mice were randomly divided into five groups (n = 20/group), including Blank group, Model group, three different dosages tocotrienol groups (Low dose group [50 mg/kg], Medium dose group [75 mg/kg], and High dose group [100 mg/kg]). The protective effects of tocotrienol were assessed using histological, flow cytometry, western blot and mouse Luminex assay. Compared with the blank group, expressions of toll-like receptor 4 (TLR4), myeloid differentiation protein 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6), NF-κB, Interleukin (IL)-6 and tumor necrosis factor (TNF) −α were increased in model group, while IL-4 and IL-10 were decreased in model group (P<0.05). Tocotrienol prevented carcinogenesis and decreased the IL-6, TNF-α, MyD88, TLR4, TRAF-6 and NF-κB expression levels, compared with the model group (P<0.05). Compared with the model group, the expression of IL-10 was increased in medium dose group and high dose group (P<0.05). The protective effects of tocotrienol may be related to the inhibition of TLR4 /MyD88 /NF-κB mediated inflammatory signaling pathways. Therefore, the use of tocotrienol can improve the abnormal expression of cytokines in a mouse model of colorectal cancer and inhibit the occurrence and development of colorectal cancer.