Zhiqiang Duan, Yuan Tian, Siyuan Wang, Ling Long, Jianjun Deng
{"title":"三维冷凝器中的流体流动和传热特性研究","authors":"Zhiqiang Duan, Yuan Tian, Siyuan Wang, Ling Long, Jianjun Deng","doi":"10.1016/j.anucene.2024.110967","DOIUrl":null,"url":null,"abstract":"<div><div>The condenser plays a crucial role in nuclear power plants, impacting equipment economics and safety through shell-side two-phase flow and heat transfer. However, existing research has oversimplified the tube bundles, lacking comprehensive information for optimal performance. In this research, a three-dimensional method incorporating mixture and multiphase flow condensation models was used to investigate flow behavior and heat transfer characteristics without simplifying the internal structure. Calculation details were enhanced by omitting the porous medium approach. The numerical model achieved reasonable accuracy when compared to theoretical calculations for a range of steam mass flow rates. Analysis of numerical results, including pressure, velocity, temperature, air mass fraction, and heat transfer coefficient, revealed that steam flow rate and air mass fraction were key factors influencing heat transfer. This research demonstrates the method’s capability to capture intricate calculation details, providing valuable insights for optimization design considerations in condenser performance.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on fluid flow and heat transfer characteristics in a three-dimensional condenser\",\"authors\":\"Zhiqiang Duan, Yuan Tian, Siyuan Wang, Ling Long, Jianjun Deng\",\"doi\":\"10.1016/j.anucene.2024.110967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The condenser plays a crucial role in nuclear power plants, impacting equipment economics and safety through shell-side two-phase flow and heat transfer. However, existing research has oversimplified the tube bundles, lacking comprehensive information for optimal performance. In this research, a three-dimensional method incorporating mixture and multiphase flow condensation models was used to investigate flow behavior and heat transfer characteristics without simplifying the internal structure. Calculation details were enhanced by omitting the porous medium approach. The numerical model achieved reasonable accuracy when compared to theoretical calculations for a range of steam mass flow rates. Analysis of numerical results, including pressure, velocity, temperature, air mass fraction, and heat transfer coefficient, revealed that steam flow rate and air mass fraction were key factors influencing heat transfer. This research demonstrates the method’s capability to capture intricate calculation details, providing valuable insights for optimization design considerations in condenser performance.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006303\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006303","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research on fluid flow and heat transfer characteristics in a three-dimensional condenser
The condenser plays a crucial role in nuclear power plants, impacting equipment economics and safety through shell-side two-phase flow and heat transfer. However, existing research has oversimplified the tube bundles, lacking comprehensive information for optimal performance. In this research, a three-dimensional method incorporating mixture and multiphase flow condensation models was used to investigate flow behavior and heat transfer characteristics without simplifying the internal structure. Calculation details were enhanced by omitting the porous medium approach. The numerical model achieved reasonable accuracy when compared to theoretical calculations for a range of steam mass flow rates. Analysis of numerical results, including pressure, velocity, temperature, air mass fraction, and heat transfer coefficient, revealed that steam flow rate and air mass fraction were key factors influencing heat transfer. This research demonstrates the method’s capability to capture intricate calculation details, providing valuable insights for optimization design considerations in condenser performance.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.