Alexander Aures, Thomas Eisenstecken, Ekaterina Elts, Robert Kilger
{"title":"连续能蒙特卡罗计算中的核数据不确定性传播","authors":"Alexander Aures, Thomas Eisenstecken, Ekaterina Elts, Robert Kilger","doi":"10.1016/j.anucene.2024.110955","DOIUrl":null,"url":null,"abstract":"<div><div>The XSUSA method is a well-established stochastic sampling method for propagating nuclear data uncertainties through multigroup neutron transport calculations. To benefit from the advantages of Monte Carlo transport codes, namely modeling complex geometries and using continuous-energy nuclear data, an extension to XSUSA is proposed which allows perturbing continuous-energy nuclear data using multigroup nuclear data covariances. To verify the extension, sensitivity profiles of nuclear reactions are calculated via direct perturbation for the benchmark problems Jezebel, Godiva, LEU-SOL-THERM-002. The sensitivity profiles agree well with those obtained from TSUNAMI and Serpent. Secondly, the extension to XSUSA is applied to produce randomly sampled continuous-energy data libraries using the covariance libraries of SCALE 6.2. With these data libraries, samples of Serpent calculations are performed for Jezebel, Godiva, LEU-SOL-THERM-002, and the TMI-1 pin cell of the OECD/NEA LWR-UAM benchmark. For each problem, the multiplication factor uncertainty agrees well with the one from TSUNAMI.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear data uncertainty propagation in continuous-energy Monte Carlo calculations\",\"authors\":\"Alexander Aures, Thomas Eisenstecken, Ekaterina Elts, Robert Kilger\",\"doi\":\"10.1016/j.anucene.2024.110955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The XSUSA method is a well-established stochastic sampling method for propagating nuclear data uncertainties through multigroup neutron transport calculations. To benefit from the advantages of Monte Carlo transport codes, namely modeling complex geometries and using continuous-energy nuclear data, an extension to XSUSA is proposed which allows perturbing continuous-energy nuclear data using multigroup nuclear data covariances. To verify the extension, sensitivity profiles of nuclear reactions are calculated via direct perturbation for the benchmark problems Jezebel, Godiva, LEU-SOL-THERM-002. The sensitivity profiles agree well with those obtained from TSUNAMI and Serpent. Secondly, the extension to XSUSA is applied to produce randomly sampled continuous-energy data libraries using the covariance libraries of SCALE 6.2. With these data libraries, samples of Serpent calculations are performed for Jezebel, Godiva, LEU-SOL-THERM-002, and the TMI-1 pin cell of the OECD/NEA LWR-UAM benchmark. For each problem, the multiplication factor uncertainty agrees well with the one from TSUNAMI.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006182\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006182","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Nuclear data uncertainty propagation in continuous-energy Monte Carlo calculations
The XSUSA method is a well-established stochastic sampling method for propagating nuclear data uncertainties through multigroup neutron transport calculations. To benefit from the advantages of Monte Carlo transport codes, namely modeling complex geometries and using continuous-energy nuclear data, an extension to XSUSA is proposed which allows perturbing continuous-energy nuclear data using multigroup nuclear data covariances. To verify the extension, sensitivity profiles of nuclear reactions are calculated via direct perturbation for the benchmark problems Jezebel, Godiva, LEU-SOL-THERM-002. The sensitivity profiles agree well with those obtained from TSUNAMI and Serpent. Secondly, the extension to XSUSA is applied to produce randomly sampled continuous-energy data libraries using the covariance libraries of SCALE 6.2. With these data libraries, samples of Serpent calculations are performed for Jezebel, Godiva, LEU-SOL-THERM-002, and the TMI-1 pin cell of the OECD/NEA LWR-UAM benchmark. For each problem, the multiplication factor uncertainty agrees well with the one from TSUNAMI.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.