O. Halim , F. Galleni , N. Forgione , I. Di Piazza , A. Pucciarelli
{"title":"详细和简化 CFD 方法的比较分析,以模拟低密度纤维束燃料元件应用中的线包燃料束","authors":"O. Halim , F. Galleni , N. Forgione , I. Di Piazza , A. Pucciarelli","doi":"10.1016/j.anucene.2024.110937","DOIUrl":null,"url":null,"abstract":"<div><div>The paper investigates the capabilities of different CFD modelling approaches in reproducing operating conditions relevant for Liquid Metal Fast Breeder Reactors technologies. The selected benchmark is the NACIE-UP facility wire-wrapped fuel bundle using Lead-Bismuth Eutectic (LBE) as coolant: the predictions are compared to the experimental data collected for several operating conditions considered in the frame of two distinct experimental campaigns. Four different modelling approaches have been adopted in this work to model the NACIE-UP Fuel Pin Simulator: Bare, Detailed, Solid-Wire and the Porous-Wire Rod Bundle model. A model-to-model comparison is performed to understand the benefits, limitations, and accuracy of using different modelling approaches for representing wrapped wires fuel bundles. Furthermore, integrating NACIE-UP benchmark experimental data into the comparative analysis reinforce the validation process of the adopted modelling approaches.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of detailed and reduced CFD approaches to model wire-wrapped fuel bundles for LMFBRs applications\",\"authors\":\"O. Halim , F. Galleni , N. Forgione , I. Di Piazza , A. Pucciarelli\",\"doi\":\"10.1016/j.anucene.2024.110937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper investigates the capabilities of different CFD modelling approaches in reproducing operating conditions relevant for Liquid Metal Fast Breeder Reactors technologies. The selected benchmark is the NACIE-UP facility wire-wrapped fuel bundle using Lead-Bismuth Eutectic (LBE) as coolant: the predictions are compared to the experimental data collected for several operating conditions considered in the frame of two distinct experimental campaigns. Four different modelling approaches have been adopted in this work to model the NACIE-UP Fuel Pin Simulator: Bare, Detailed, Solid-Wire and the Porous-Wire Rod Bundle model. A model-to-model comparison is performed to understand the benefits, limitations, and accuracy of using different modelling approaches for representing wrapped wires fuel bundles. Furthermore, integrating NACIE-UP benchmark experimental data into the comparative analysis reinforce the validation process of the adopted modelling approaches.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006005\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A comparative analysis of detailed and reduced CFD approaches to model wire-wrapped fuel bundles for LMFBRs applications
The paper investigates the capabilities of different CFD modelling approaches in reproducing operating conditions relevant for Liquid Metal Fast Breeder Reactors technologies. The selected benchmark is the NACIE-UP facility wire-wrapped fuel bundle using Lead-Bismuth Eutectic (LBE) as coolant: the predictions are compared to the experimental data collected for several operating conditions considered in the frame of two distinct experimental campaigns. Four different modelling approaches have been adopted in this work to model the NACIE-UP Fuel Pin Simulator: Bare, Detailed, Solid-Wire and the Porous-Wire Rod Bundle model. A model-to-model comparison is performed to understand the benefits, limitations, and accuracy of using different modelling approaches for representing wrapped wires fuel bundles. Furthermore, integrating NACIE-UP benchmark experimental data into the comparative analysis reinforce the validation process of the adopted modelling approaches.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.