Alia Semab , Ali Raza Ayub , Saba Zahid , Mohammed A. Amin , Mohammed Aljohani , Fahad M. Almutairi , Majid S. Jabir , Hasan Majdi , Tamer H.A. Hasanin , Rasheed Ahmad Khera
{"title":"基于 BDTPT 衍生物的对称非富勒烯电子受体分子的理论研究,以增强有机太阳能电池的光电特性","authors":"Alia Semab , Ali Raza Ayub , Saba Zahid , Mohammed A. Amin , Mohammed Aljohani , Fahad M. Almutairi , Majid S. Jabir , Hasan Majdi , Tamer H.A. Hasanin , Rasheed Ahmad Khera","doi":"10.1016/j.comptc.2024.114891","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative and promising approach to developing sustainable energy solutions and promoting an eco-friendly society is the use of organic solar cells. The key component for a solution-processed bulk-heterojunction organic solar cell is the photoactive layer’s embedded donor and acceptor components. This research presents seven modified molecules comprising the A–D–A type structural configuration, entitled <strong>A1</strong>–<strong>A7</strong>. All these designed moieties exhibit marvelous outcomes in optoelectronic features, including λ<sub>max</sub> and band gap, owing to non-fullerene acceptors in the terminal regions. All these compounds are computationally assessed by employing B3LYP at 6-31G (d,p) basis set using chloroform solvent. Compared to the reference molecule, the designed molecules (<strong>A1</strong>, <strong>A2</strong>, <strong>A4</strong>, <strong>A5</strong>, <strong>A6</strong>, <strong>A7</strong>) have reflected breakthrough results. The prerequisite for directing the practical application of designed acceptors is the efficient charge transfer, evidenced by coupling the J61 donor complex with the designed <strong>A5</strong> acceptor.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114891"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical study on symmetrical non-fullerene electron acceptors molecules on BDTPT based derivatives to enhance photovoltaic properties of organic solar cells\",\"authors\":\"Alia Semab , Ali Raza Ayub , Saba Zahid , Mohammed A. Amin , Mohammed Aljohani , Fahad M. Almutairi , Majid S. Jabir , Hasan Majdi , Tamer H.A. Hasanin , Rasheed Ahmad Khera\",\"doi\":\"10.1016/j.comptc.2024.114891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An innovative and promising approach to developing sustainable energy solutions and promoting an eco-friendly society is the use of organic solar cells. The key component for a solution-processed bulk-heterojunction organic solar cell is the photoactive layer’s embedded donor and acceptor components. This research presents seven modified molecules comprising the A–D–A type structural configuration, entitled <strong>A1</strong>–<strong>A7</strong>. All these designed moieties exhibit marvelous outcomes in optoelectronic features, including λ<sub>max</sub> and band gap, owing to non-fullerene acceptors in the terminal regions. All these compounds are computationally assessed by employing B3LYP at 6-31G (d,p) basis set using chloroform solvent. Compared to the reference molecule, the designed molecules (<strong>A1</strong>, <strong>A2</strong>, <strong>A4</strong>, <strong>A5</strong>, <strong>A6</strong>, <strong>A7</strong>) have reflected breakthrough results. The prerequisite for directing the practical application of designed acceptors is the efficient charge transfer, evidenced by coupling the J61 donor complex with the designed <strong>A5</strong> acceptor.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1241 \",\"pages\":\"Article 114891\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X24004304\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004304","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A theoretical study on symmetrical non-fullerene electron acceptors molecules on BDTPT based derivatives to enhance photovoltaic properties of organic solar cells
An innovative and promising approach to developing sustainable energy solutions and promoting an eco-friendly society is the use of organic solar cells. The key component for a solution-processed bulk-heterojunction organic solar cell is the photoactive layer’s embedded donor and acceptor components. This research presents seven modified molecules comprising the A–D–A type structural configuration, entitled A1–A7. All these designed moieties exhibit marvelous outcomes in optoelectronic features, including λmax and band gap, owing to non-fullerene acceptors in the terminal regions. All these compounds are computationally assessed by employing B3LYP at 6-31G (d,p) basis set using chloroform solvent. Compared to the reference molecule, the designed molecules (A1, A2, A4, A5, A6, A7) have reflected breakthrough results. The prerequisite for directing the practical application of designed acceptors is the efficient charge transfer, evidenced by coupling the J61 donor complex with the designed A5 acceptor.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.