用于改进红树林监测的物候和水位时序红树林指数

IF 7.6 Q1 REMOTE SENSING
Ke Huang , Gang Yang , Weiwei Sun , Bolin Fu , Chao Chen , Xiangchao Meng , Tian Feng , Lihua Wang
{"title":"用于改进红树林监测的物候和水位时序红树林指数","authors":"Ke Huang ,&nbsp;Gang Yang ,&nbsp;Weiwei Sun ,&nbsp;Bolin Fu ,&nbsp;Chao Chen ,&nbsp;Xiangchao Meng ,&nbsp;Tian Feng ,&nbsp;Lihua Wang","doi":"10.1016/j.jag.2024.104188","DOIUrl":null,"url":null,"abstract":"<div><div>Mangroves face decline and degradation due to human activities and natural forces, making their accurate mapping and dynamic monitoring essential. However, most of the existing mangrove indices that rely on multispectral image spectral characteristics suffer from limitations in terms of recognition accuracy and universality. Therefore, this study aimed to develop a robust and efficient Phenology and Water level Time-series Mangrove Index (PWTMI) for mangrove monitoring. PWTMI is constructed by combining spectral and temporal characteristics from dense time-series multispectral data, wherein phenology and water level time-series characteristics are extracted from NDVI and MNDWI time series. The results show that PWTMI outperforms existing multispectral-based mangrove indices and has an accuracy similar to a hyperspectral-based mangrove index, with overall accuracy ranging from 91.49% to 98.83% and F1 score ranging from 0.91 to 0.98 in four typical areas in China, indicating great potential for long time-series and large-scale mangrove monitoring.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104188"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The phenology and water level time-series mangrove index for improved mangrove monitoring\",\"authors\":\"Ke Huang ,&nbsp;Gang Yang ,&nbsp;Weiwei Sun ,&nbsp;Bolin Fu ,&nbsp;Chao Chen ,&nbsp;Xiangchao Meng ,&nbsp;Tian Feng ,&nbsp;Lihua Wang\",\"doi\":\"10.1016/j.jag.2024.104188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mangroves face decline and degradation due to human activities and natural forces, making their accurate mapping and dynamic monitoring essential. However, most of the existing mangrove indices that rely on multispectral image spectral characteristics suffer from limitations in terms of recognition accuracy and universality. Therefore, this study aimed to develop a robust and efficient Phenology and Water level Time-series Mangrove Index (PWTMI) for mangrove monitoring. PWTMI is constructed by combining spectral and temporal characteristics from dense time-series multispectral data, wherein phenology and water level time-series characteristics are extracted from NDVI and MNDWI time series. The results show that PWTMI outperforms existing multispectral-based mangrove indices and has an accuracy similar to a hyperspectral-based mangrove index, with overall accuracy ranging from 91.49% to 98.83% and F1 score ranging from 0.91 to 0.98 in four typical areas in China, indicating great potential for long time-series and large-scale mangrove monitoring.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104188\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

由于人类活动和自然力量的影响,红树林面临衰退和退化,因此对其进行精确绘图和动态监测至关重要。然而,现有的红树林指数大多依赖于多光谱图像的光谱特征,在识别准确性和普遍性方面存在局限性。因此,本研究旨在开发一种稳健高效的红树林物候和水位时序指数(PWTMI),用于红树林监测。PWTMI 是通过结合密集时间序列多光谱数据的光谱和时间特征构建的,其中物候和水位时间序列特征是从 NDVI 和 MNDWI 时间序列中提取的。结果表明,PWTMI优于现有的基于多光谱的红树林指数,其准确度与基于高光谱的红树林指数相近,在中国四个典型地区的总体准确度为91.49%至98.83%,F1得分为0.91至0.98,这表明PWTMI在长时序列和大规模红树林监测方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The phenology and water level time-series mangrove index for improved mangrove monitoring
Mangroves face decline and degradation due to human activities and natural forces, making their accurate mapping and dynamic monitoring essential. However, most of the existing mangrove indices that rely on multispectral image spectral characteristics suffer from limitations in terms of recognition accuracy and universality. Therefore, this study aimed to develop a robust and efficient Phenology and Water level Time-series Mangrove Index (PWTMI) for mangrove monitoring. PWTMI is constructed by combining spectral and temporal characteristics from dense time-series multispectral data, wherein phenology and water level time-series characteristics are extracted from NDVI and MNDWI time series. The results show that PWTMI outperforms existing multispectral-based mangrove indices and has an accuracy similar to a hyperspectral-based mangrove index, with overall accuracy ranging from 91.49% to 98.83% and F1 score ranging from 0.91 to 0.98 in four typical areas in China, indicating great potential for long time-series and large-scale mangrove monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信