{"title":"带机器故障的分布式混合流程车间调度的双群合作散点搜索算法","authors":"Yang Zuo , Fuqing Zhao , Jianlin Zhang","doi":"10.1016/j.cie.2024.110624","DOIUrl":null,"url":null,"abstract":"<div><div>The occurrence of machine breakdowns is a frequent and dynamic phenomenon in the production process. The implementation of effective preventive measures can mitigate such events and result in reduced production costs. This paper investigates the distributed hybrid flow shop scheduling problem with machine breakdown (DHFSSPB) considering short maintenance time. The bi-population cooperative scatter search (BCSS) algorithm is proposed to address the DHFSSPB, wherein the search for the optimal scheduling sequence is transformed into genetic evolution aiming to obtain a gene chain with both minimum lower bound and minimum cost attributes. Firstly, the DHFSSPB problem is modeled through a combination of predictive maintenance strategy and right-shift rescheduling rule. Subsequently, a diversification approach is developed to facilitate attribute inheritance, enhance the efficiency of job allocation, and establish a reference set. The reference set is partitioned into two subpopulations based on lower bound attributes and cost attributes, respectively. The corresponding hybrid search strategies are designed to enhance the efficiency of job sorting and machine selection for subpopulations with distinct attributes. The cooperative evolution between subpopulations occurs through the competitive interaction and fusion of individuals. An enhanced reinforcement learning approach is proposed to expedite the acceleration of individual attribute evolution by leveraging evolutionary knowledge acquired from populations, thereby effectively guiding the evolutionary trajectories of individuals. Additionally, a method for evaluating the population during the learning process is developed based on problem characteristics to enhance learning efficiency. Experimental results demonstrate that BCSS outperforms the comparative algorithm in solving the DHFSSPB.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"197 ","pages":"Article 110624"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown\",\"authors\":\"Yang Zuo , Fuqing Zhao , Jianlin Zhang\",\"doi\":\"10.1016/j.cie.2024.110624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The occurrence of machine breakdowns is a frequent and dynamic phenomenon in the production process. The implementation of effective preventive measures can mitigate such events and result in reduced production costs. This paper investigates the distributed hybrid flow shop scheduling problem with machine breakdown (DHFSSPB) considering short maintenance time. The bi-population cooperative scatter search (BCSS) algorithm is proposed to address the DHFSSPB, wherein the search for the optimal scheduling sequence is transformed into genetic evolution aiming to obtain a gene chain with both minimum lower bound and minimum cost attributes. Firstly, the DHFSSPB problem is modeled through a combination of predictive maintenance strategy and right-shift rescheduling rule. Subsequently, a diversification approach is developed to facilitate attribute inheritance, enhance the efficiency of job allocation, and establish a reference set. The reference set is partitioned into two subpopulations based on lower bound attributes and cost attributes, respectively. The corresponding hybrid search strategies are designed to enhance the efficiency of job sorting and machine selection for subpopulations with distinct attributes. The cooperative evolution between subpopulations occurs through the competitive interaction and fusion of individuals. An enhanced reinforcement learning approach is proposed to expedite the acceleration of individual attribute evolution by leveraging evolutionary knowledge acquired from populations, thereby effectively guiding the evolutionary trajectories of individuals. Additionally, a method for evaluating the population during the learning process is developed based on problem characteristics to enhance learning efficiency. Experimental results demonstrate that BCSS outperforms the comparative algorithm in solving the DHFSSPB.</div></div>\",\"PeriodicalId\":55220,\"journal\":{\"name\":\"Computers & Industrial Engineering\",\"volume\":\"197 \",\"pages\":\"Article 110624\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360835224007460\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224007460","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown
The occurrence of machine breakdowns is a frequent and dynamic phenomenon in the production process. The implementation of effective preventive measures can mitigate such events and result in reduced production costs. This paper investigates the distributed hybrid flow shop scheduling problem with machine breakdown (DHFSSPB) considering short maintenance time. The bi-population cooperative scatter search (BCSS) algorithm is proposed to address the DHFSSPB, wherein the search for the optimal scheduling sequence is transformed into genetic evolution aiming to obtain a gene chain with both minimum lower bound and minimum cost attributes. Firstly, the DHFSSPB problem is modeled through a combination of predictive maintenance strategy and right-shift rescheduling rule. Subsequently, a diversification approach is developed to facilitate attribute inheritance, enhance the efficiency of job allocation, and establish a reference set. The reference set is partitioned into two subpopulations based on lower bound attributes and cost attributes, respectively. The corresponding hybrid search strategies are designed to enhance the efficiency of job sorting and machine selection for subpopulations with distinct attributes. The cooperative evolution between subpopulations occurs through the competitive interaction and fusion of individuals. An enhanced reinforcement learning approach is proposed to expedite the acceleration of individual attribute evolution by leveraging evolutionary knowledge acquired from populations, thereby effectively guiding the evolutionary trajectories of individuals. Additionally, a method for evaluating the population during the learning process is developed based on problem characteristics to enhance learning efficiency. Experimental results demonstrate that BCSS outperforms the comparative algorithm in solving the DHFSSPB.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.