Alexandre Cellier-Devaux , Daniele Astolfi , Vincent Andrieu
{"title":"无向加权图上多代理非线性系统同步的边的黎曼能量分析","authors":"Alexandre Cellier-Devaux , Daniele Astolfi , Vincent Andrieu","doi":"10.1016/j.automatica.2024.111950","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we investigate the problem of global exponential synchronization of multi-agent systems described by non-linear input affine dynamics. We consider the case of networks described by undirected connected graphs possibly without leader. We present a set of sufficient conditions based on a Riemannian metric approach in order to design a state-feedback distributed control law. Then, we study the convergence properties of the overall network. By exploiting the properties of the edge Laplacian we construct a Lyapunov function that allows to conclude global exponential synchronization of the overall network.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edges’ Riemannian energy analysis for synchronization of multi-agent nonlinear systems over undirected weighted graphs\",\"authors\":\"Alexandre Cellier-Devaux , Daniele Astolfi , Vincent Andrieu\",\"doi\":\"10.1016/j.automatica.2024.111950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we investigate the problem of global exponential synchronization of multi-agent systems described by non-linear input affine dynamics. We consider the case of networks described by undirected connected graphs possibly without leader. We present a set of sufficient conditions based on a Riemannian metric approach in order to design a state-feedback distributed control law. Then, we study the convergence properties of the overall network. By exploiting the properties of the edge Laplacian we construct a Lyapunov function that allows to conclude global exponential synchronization of the overall network.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004448\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004448","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Edges’ Riemannian energy analysis for synchronization of multi-agent nonlinear systems over undirected weighted graphs
In this note we investigate the problem of global exponential synchronization of multi-agent systems described by non-linear input affine dynamics. We consider the case of networks described by undirected connected graphs possibly without leader. We present a set of sufficient conditions based on a Riemannian metric approach in order to design a state-feedback distributed control law. Then, we study the convergence properties of the overall network. By exploiting the properties of the edge Laplacian we construct a Lyapunov function that allows to conclude global exponential synchronization of the overall network.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.