Xiaoqiang Ji , Shaoqin Zhu , Yangsheng Xu , Richard W. Longman
{"title":"基于提升时间稳定反演的线性非最小相位系统前馈控制","authors":"Xiaoqiang Ji , Shaoqin Zhu , Yangsheng Xu , Richard W. Longman","doi":"10.1016/j.automatica.2024.111979","DOIUrl":null,"url":null,"abstract":"<div><div>The feedforward control strategy exhibits substantial capability and high-precision control for output tracking tasks. However, the feedforward control action obtained through solving the inverse problem is unstable for non-minimum phase systems. In this paper, a novel stable inversion method is presented, termed lifted time stable inversion. Compared to the existing method, the proposed method does not necessitate infinite window to accomplish the tracking tasks. A comprehensive analysis of the developed method is provided, focusing on analysis of finite time stability and input–output finite time stability, aspects that have garnered limited attention in the literature on feedforward control. Furthermore, the relationship with existing stable inversion method is illustrated by constructing a linear transformation of the initial conditions for both inversions. Simulation results substantiate the validity of the finite time bounds and demonstrate the superior tracking advantage of the proposed method relative to the existing method. The performance of the proposed method is further displayed experimentally on a piezoelectric ceramic positioning platform.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111979"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifted time stable inversion based feedforward control for linear non-minimum phase systems\",\"authors\":\"Xiaoqiang Ji , Shaoqin Zhu , Yangsheng Xu , Richard W. Longman\",\"doi\":\"10.1016/j.automatica.2024.111979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The feedforward control strategy exhibits substantial capability and high-precision control for output tracking tasks. However, the feedforward control action obtained through solving the inverse problem is unstable for non-minimum phase systems. In this paper, a novel stable inversion method is presented, termed lifted time stable inversion. Compared to the existing method, the proposed method does not necessitate infinite window to accomplish the tracking tasks. A comprehensive analysis of the developed method is provided, focusing on analysis of finite time stability and input–output finite time stability, aspects that have garnered limited attention in the literature on feedforward control. Furthermore, the relationship with existing stable inversion method is illustrated by constructing a linear transformation of the initial conditions for both inversions. Simulation results substantiate the validity of the finite time bounds and demonstrate the superior tracking advantage of the proposed method relative to the existing method. The performance of the proposed method is further displayed experimentally on a piezoelectric ceramic positioning platform.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"171 \",\"pages\":\"Article 111979\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004734\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004734","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Lifted time stable inversion based feedforward control for linear non-minimum phase systems
The feedforward control strategy exhibits substantial capability and high-precision control for output tracking tasks. However, the feedforward control action obtained through solving the inverse problem is unstable for non-minimum phase systems. In this paper, a novel stable inversion method is presented, termed lifted time stable inversion. Compared to the existing method, the proposed method does not necessitate infinite window to accomplish the tracking tasks. A comprehensive analysis of the developed method is provided, focusing on analysis of finite time stability and input–output finite time stability, aspects that have garnered limited attention in the literature on feedforward control. Furthermore, the relationship with existing stable inversion method is illustrated by constructing a linear transformation of the initial conditions for both inversions. Simulation results substantiate the validity of the finite time bounds and demonstrate the superior tracking advantage of the proposed method relative to the existing method. The performance of the proposed method is further displayed experimentally on a piezoelectric ceramic positioning platform.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.