利用在线递归独立成分分析去除心电信号中的伪影

K. Gunasekaran , V.D. Ambeth Kumar , Mary Judith A.
{"title":"利用在线递归独立成分分析去除心电信号中的伪影","authors":"K. Gunasekaran ,&nbsp;V.D. Ambeth Kumar ,&nbsp;Mary Judith A.","doi":"10.1016/j.jcmds.2024.100102","DOIUrl":null,"url":null,"abstract":"<div><div>The diagnosis of cardiac abnormalities and monitoring of heart health heavily rely on Electrocardiogram (ECG) signals. Unfortunately, these signals frequently encounter interference from diverse artifacts, impeding precise interpretation and analysis. To overcome this challenge, we suggest a novel method for real-time artifact removal from ECG signals through the utilization of Online Recursive Independent Component Analysis (ORICA). Our study outlines a systematic preprocessing pipeline, adaptively estimating the mixing matrix and demixing matrix of the ICA model while streaming data is processed. Additionally, we explore the selection of appropriate ICA components and the use of relevant feature extraction techniques to enhance the quality of extracted cardiac signals. This research presents a promising solution for removing artifacts from ECG signals in real-time, paving the way for improved cardiac diagnostics and monitoring systems. Comparative analyses demonstrate significant improvements in the accuracy of subsequent ECG analysis and interpretation following the application of our ORICA-based preprocessing.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"13 ","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artifact removal from ECG signals using online recursive independent component analysis\",\"authors\":\"K. Gunasekaran ,&nbsp;V.D. Ambeth Kumar ,&nbsp;Mary Judith A.\",\"doi\":\"10.1016/j.jcmds.2024.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The diagnosis of cardiac abnormalities and monitoring of heart health heavily rely on Electrocardiogram (ECG) signals. Unfortunately, these signals frequently encounter interference from diverse artifacts, impeding precise interpretation and analysis. To overcome this challenge, we suggest a novel method for real-time artifact removal from ECG signals through the utilization of Online Recursive Independent Component Analysis (ORICA). Our study outlines a systematic preprocessing pipeline, adaptively estimating the mixing matrix and demixing matrix of the ICA model while streaming data is processed. Additionally, we explore the selection of appropriate ICA components and the use of relevant feature extraction techniques to enhance the quality of extracted cardiac signals. This research presents a promising solution for removing artifacts from ECG signals in real-time, paving the way for improved cardiac diagnostics and monitoring systems. Comparative analyses demonstrate significant improvements in the accuracy of subsequent ECG analysis and interpretation following the application of our ORICA-based preprocessing.</div></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"13 \",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

诊断心脏异常和监测心脏健康在很大程度上依赖于心电图(ECG)信号。遗憾的是,这些信号经常会受到各种伪影的干扰,妨碍了精确的解读和分析。为了克服这一挑战,我们提出了一种新方法,利用在线递归独立成分分析(ORICA)实时去除心电信号中的伪影。我们的研究概述了一个系统化的预处理管道,在处理流数据的同时自适应地估计 ICA 模型的混合矩阵和去混合矩阵。此外,我们还探讨了如何选择合适的 ICA 分量,以及如何使用相关的特征提取技术来提高提取的心脏信号的质量。这项研究为实时去除心电信号中的伪影提供了一个前景广阔的解决方案,为改进心脏诊断和监测系统铺平了道路。对比分析表明,在应用基于 ORICA 的预处理后,后续心电图分析和解读的准确性有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artifact removal from ECG signals using online recursive independent component analysis
The diagnosis of cardiac abnormalities and monitoring of heart health heavily rely on Electrocardiogram (ECG) signals. Unfortunately, these signals frequently encounter interference from diverse artifacts, impeding precise interpretation and analysis. To overcome this challenge, we suggest a novel method for real-time artifact removal from ECG signals through the utilization of Online Recursive Independent Component Analysis (ORICA). Our study outlines a systematic preprocessing pipeline, adaptively estimating the mixing matrix and demixing matrix of the ICA model while streaming data is processed. Additionally, we explore the selection of appropriate ICA components and the use of relevant feature extraction techniques to enhance the quality of extracted cardiac signals. This research presents a promising solution for removing artifacts from ECG signals in real-time, paving the way for improved cardiac diagnostics and monitoring systems. Comparative analyses demonstrate significant improvements in the accuracy of subsequent ECG analysis and interpretation following the application of our ORICA-based preprocessing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信