Minghui Liu , Lei Li , Zhechen Fan, Yalan Luo, Shen Tian, Pengbo Chen, Yingying Qiao, Chongxin Shan
{"title":"基于多反射差分亥姆霍兹电池和 VMD-airPLS 算法的痕量气体检测系统","authors":"Minghui Liu , Lei Li , Zhechen Fan, Yalan Luo, Shen Tian, Pengbo Chen, Yingying Qiao, Chongxin Shan","doi":"10.1016/j.sna.2024.115939","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a photoacoustic spectroscopy sensor based on multi-reflection differential Helmholtz cell and Variational Mode Decomposition-adaptive iteratively reweighted penalized least squares (VMD-airPLS) algorithm is proposed to improve the signal-to-noise ratio (SNR) and reduce the response time of the system. The Helmholtz photoacoustic cell, fabricated from brass, allows multiple reflections of the laser light within its resonant cavity, effectively increasing the gas absorption path by a factor of ∼ 6. The VMD-airPLS algorithm suppresses incoherent noise and slowly varying baseline noise over time. To validate the performance of the system, methane is measured using a laser with a wavelength of 1653.7 nm. Experimental results demonstrate a significant enhancement in the sensitivity of system, up to approximately 2.2 times, and an improvement in the SNR by up to approximately 4.2 times compared to single-pass system. The minimum detection limit for methane is ∼ 96.79 ppb.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace gas detection system based on multi-reflection differential Helmholtz cell and VMD-airPLS algorithm\",\"authors\":\"Minghui Liu , Lei Li , Zhechen Fan, Yalan Luo, Shen Tian, Pengbo Chen, Yingying Qiao, Chongxin Shan\",\"doi\":\"10.1016/j.sna.2024.115939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a photoacoustic spectroscopy sensor based on multi-reflection differential Helmholtz cell and Variational Mode Decomposition-adaptive iteratively reweighted penalized least squares (VMD-airPLS) algorithm is proposed to improve the signal-to-noise ratio (SNR) and reduce the response time of the system. The Helmholtz photoacoustic cell, fabricated from brass, allows multiple reflections of the laser light within its resonant cavity, effectively increasing the gas absorption path by a factor of ∼ 6. The VMD-airPLS algorithm suppresses incoherent noise and slowly varying baseline noise over time. To validate the performance of the system, methane is measured using a laser with a wavelength of 1653.7 nm. Experimental results demonstrate a significant enhancement in the sensitivity of system, up to approximately 2.2 times, and an improvement in the SNR by up to approximately 4.2 times compared to single-pass system. The minimum detection limit for methane is ∼ 96.79 ppb.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009336\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Trace gas detection system based on multi-reflection differential Helmholtz cell and VMD-airPLS algorithm
In this paper, a photoacoustic spectroscopy sensor based on multi-reflection differential Helmholtz cell and Variational Mode Decomposition-adaptive iteratively reweighted penalized least squares (VMD-airPLS) algorithm is proposed to improve the signal-to-noise ratio (SNR) and reduce the response time of the system. The Helmholtz photoacoustic cell, fabricated from brass, allows multiple reflections of the laser light within its resonant cavity, effectively increasing the gas absorption path by a factor of ∼ 6. The VMD-airPLS algorithm suppresses incoherent noise and slowly varying baseline noise over time. To validate the performance of the system, methane is measured using a laser with a wavelength of 1653.7 nm. Experimental results demonstrate a significant enhancement in the sensitivity of system, up to approximately 2.2 times, and an improvement in the SNR by up to approximately 4.2 times compared to single-pass system. The minimum detection limit for methane is ∼ 96.79 ppb.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.