{"title":"测地线在第一通道渗流中穿过任何模式,无需任何矩假设,且通道时间可能无限长","authors":"Antonin Jacquet","doi":"10.1016/j.spa.2024.104496","DOIUrl":null,"url":null,"abstract":"<div><div>In first-passage percolation, one places nonnegative i.i.d. random variables (<span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>) on the edges of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. A geodesic is an optimal path for the passage times <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>. Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. When we assume that the common distribution of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic. This paper completes this study by showing that this result remains true when we consider distributions with an unbounded support without any moment assumption or distributions with possibly infinite passage times. The techniques of proof differ from the preceding article and rely on a notion of penalized geodesic.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104496"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesics cross any pattern in first-passage percolation without any moment assumption and with possibly infinite passage times\",\"authors\":\"Antonin Jacquet\",\"doi\":\"10.1016/j.spa.2024.104496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In first-passage percolation, one places nonnegative i.i.d. random variables (<span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>) on the edges of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. A geodesic is an optimal path for the passage times <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>. Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. When we assume that the common distribution of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic. This paper completes this study by showing that this result remains true when we consider distributions with an unbounded support without any moment assumption or distributions with possibly infinite passage times. The techniques of proof differ from the preceding article and rely on a notion of penalized geodesic.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104496\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002047\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Geodesics cross any pattern in first-passage percolation without any moment assumption and with possibly infinite passage times
In first-passage percolation, one places nonnegative i.i.d. random variables () on the edges of . A geodesic is an optimal path for the passage times . Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. When we assume that the common distribution of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic. This paper completes this study by showing that this result remains true when we consider distributions with an unbounded support without any moment assumption or distributions with possibly infinite passage times. The techniques of proof differ from the preceding article and rely on a notion of penalized geodesic.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.