Leilei Cui , Bo Pang , Miroslav Krstić , Zhong-Ping Jiang
{"title":"基于学习的线性时延系统自适应优化控制:价值迭代法","authors":"Leilei Cui , Bo Pang , Miroslav Krstić , Zhong-Ping Jiang","doi":"10.1016/j.automatica.2024.111944","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel learning-based adaptive optimal controller design method for a class of continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforcement learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven method to learn the near-optimal controller without the precise knowledge of system dynamics. Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati equation for the linear quadratic optimal control problem of time-delay systems using finite samples of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the near-optimal solution. Compared with the previous literature, the nice features of the proposed VI algorithm are that it is directly developed for continuous-time systems without discretization and an initial admissible controller is not required for implementing the algorithm. The efficacy of the proposed methodology is demonstrated by two practical examples of metal cutting and autonomous driving.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based adaptive optimal control of linear time-delay systems: A value iteration approach\",\"authors\":\"Leilei Cui , Bo Pang , Miroslav Krstić , Zhong-Ping Jiang\",\"doi\":\"10.1016/j.automatica.2024.111944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel learning-based adaptive optimal controller design method for a class of continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforcement learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven method to learn the near-optimal controller without the precise knowledge of system dynamics. Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati equation for the linear quadratic optimal control problem of time-delay systems using finite samples of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the near-optimal solution. Compared with the previous literature, the nice features of the proposed VI algorithm are that it is directly developed for continuous-time systems without discretization and an initial admissible controller is not required for implementing the algorithm. The efficacy of the proposed methodology is demonstrated by two practical examples of metal cutting and autonomous driving.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004382\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004382","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文针对一类连续时间线性时延系统提出了一种新颖的基于学习的自适应最优控制器设计方法。其关键策略是利用最先进的强化学习 (RL) 技术和自适应动态编程 (ADP),并提出一种数据驱动方法,在不精确了解系统动态的情况下学习近优控制器。具体地说,提出了一种值迭代(VI)算法,利用输入状态轨迹数据的有限样本来求解时延系统线性二次优化控制问题的无穷维 Riccati 方程。严谨地证明了所提出的 VI 算法收敛到了近似最优解。与之前的文献相比,所提出的 VI 算法的优点在于它是直接针对连续时间系统开发的,无需离散化,并且在实现算法时不需要初始可接受控制器。我们通过金属切削和自动驾驶两个实际案例来证明所提方法的有效性。
Learning-based adaptive optimal control of linear time-delay systems: A value iteration approach
This paper proposes a novel learning-based adaptive optimal controller design method for a class of continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforcement learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven method to learn the near-optimal controller without the precise knowledge of system dynamics. Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati equation for the linear quadratic optimal control problem of time-delay systems using finite samples of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the near-optimal solution. Compared with the previous literature, the nice features of the proposed VI algorithm are that it is directly developed for continuous-time systems without discretization and an initial admissible controller is not required for implementing the algorithm. The efficacy of the proposed methodology is demonstrated by two practical examples of metal cutting and autonomous driving.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.