利用激光束预测和自动检测金属粉末床熔化过程中收缩线位置的方法

Dominik Rauner, Daniel Wolf, Lukas Spano, Michael F. Zaeh
{"title":"利用激光束预测和自动检测金属粉末床熔化过程中收缩线位置的方法","authors":"Dominik Rauner,&nbsp;Daniel Wolf,&nbsp;Lukas Spano,&nbsp;Michael F. Zaeh","doi":"10.1016/j.procir.2024.08.240","DOIUrl":null,"url":null,"abstract":"<div><div>The powder bed fusion of metals using a laser beam enables the additive manufacturing of topology-optimized parts involving structural transitions and rapid cross-sectional changes. Both geometry features can cause shrink lines, which reduce the dimensional accuracy and the fatigue resistance of the manufactured part. To provide reduction measures, their point of origin needs to be located in advance. This work presents an algorithm capable of automatically predicting the shrink line location for arbitrary discretized geometries. The results demonstrate the reliable detection and layer-wise characterization of the shrink-line-causing geometry features. Suitable discretization parameters were derived and the dependence of the computational time on the part complexity was quantified.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for the predictive and automated detection of the shrink line location during the powder bed fusion of metals using a laser beam\",\"authors\":\"Dominik Rauner,&nbsp;Daniel Wolf,&nbsp;Lukas Spano,&nbsp;Michael F. Zaeh\",\"doi\":\"10.1016/j.procir.2024.08.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The powder bed fusion of metals using a laser beam enables the additive manufacturing of topology-optimized parts involving structural transitions and rapid cross-sectional changes. Both geometry features can cause shrink lines, which reduce the dimensional accuracy and the fatigue resistance of the manufactured part. To provide reduction measures, their point of origin needs to be located in advance. This work presents an algorithm capable of automatically predicting the shrink line location for arbitrary discretized geometries. The results demonstrate the reliable detection and layer-wise characterization of the shrink-line-causing geometry features. Suitable discretization parameters were derived and the dependence of the computational time on the part complexity was quantified.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124008072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124008072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用激光束对金属进行粉末床熔融,可以快速制造出拓扑优化的零件,其中涉及结构转换和快速截面变化。这两种几何特征都会导致收缩线,从而降低制造零件的尺寸精度和抗疲劳性。为了采取减少收缩线的措施,需要提前定位收缩线的起始点。这项工作提出了一种算法,能够自动预测任意离散几何形状的收缩线位置。结果表明,该算法能可靠地检测和分层描述导致收缩线的几何特征。得出了合适的离散化参数,并量化了计算时间与零件复杂度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for the predictive and automated detection of the shrink line location during the powder bed fusion of metals using a laser beam
The powder bed fusion of metals using a laser beam enables the additive manufacturing of topology-optimized parts involving structural transitions and rapid cross-sectional changes. Both geometry features can cause shrink lines, which reduce the dimensional accuracy and the fatigue resistance of the manufactured part. To provide reduction measures, their point of origin needs to be located in advance. This work presents an algorithm capable of automatically predicting the shrink line location for arbitrary discretized geometries. The results demonstrate the reliable detection and layer-wise characterization of the shrink-line-causing geometry features. Suitable discretization parameters were derived and the dependence of the computational time on the part complexity was quantified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信