使用二维 CNN 和三维 CNN 进行时空动作检测

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hengshuai Liu , Jianjun Li, Yuhong Tang, Ningfei Zhang, Ming Zhang, Yaping Wang, Guang Li
{"title":"使用二维 CNN 和三维 CNN 进行时空动作检测","authors":"Hengshuai Liu ,&nbsp;Jianjun Li,&nbsp;Yuhong Tang,&nbsp;Ningfei Zhang,&nbsp;Ming Zhang,&nbsp;Yaping Wang,&nbsp;Guang Li","doi":"10.1016/j.compeleceng.2024.109739","DOIUrl":null,"url":null,"abstract":"<div><div>In order to address the low accuracy issue in human spatiotemporal action detection tasks, this study proposes a more effective CNN framework. Like YOWO model, we also use CNN for feature extraction, however, we only utilize the extracted spatiotemporal features for action recognition and the fused features of spatiotemporal and spatial information for action localization. Additionally, in the action localization branch, we make improvements to the original channel fusion and attention mechanism (CFAM). We introduce a combination of convolution and attention mechanisms to selectively replace the traditional convolutions, enabling more effective utilization of the fused features. Finally, in order to make the model more accurate for bounding box regression, we use CIoU loss instead of the offset loss. Results show that our proposed method achieves frame-mAP scores (@IoU 0.5) of 75.73 % and 83.13 % on JHMDB-21 and UCF101–24 datasets, respectively. For video-mAP, we obtain 88.96 %, 85.81 % and 68.59 % at IoU threshold of 0.2,0.5 and 0.75 on JHMDB-21 dataset and 75.05 %, 69.72 % and 48.95 % at IoU threshold of 0.1,0.2 and 0.5 on UCF101–24 dataset.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109739"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Action Detection Using 2D CNN and 3D CNN\",\"authors\":\"Hengshuai Liu ,&nbsp;Jianjun Li,&nbsp;Yuhong Tang,&nbsp;Ningfei Zhang,&nbsp;Ming Zhang,&nbsp;Yaping Wang,&nbsp;Guang Li\",\"doi\":\"10.1016/j.compeleceng.2024.109739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to address the low accuracy issue in human spatiotemporal action detection tasks, this study proposes a more effective CNN framework. Like YOWO model, we also use CNN for feature extraction, however, we only utilize the extracted spatiotemporal features for action recognition and the fused features of spatiotemporal and spatial information for action localization. Additionally, in the action localization branch, we make improvements to the original channel fusion and attention mechanism (CFAM). We introduce a combination of convolution and attention mechanisms to selectively replace the traditional convolutions, enabling more effective utilization of the fused features. Finally, in order to make the model more accurate for bounding box regression, we use CIoU loss instead of the offset loss. Results show that our proposed method achieves frame-mAP scores (@IoU 0.5) of 75.73 % and 83.13 % on JHMDB-21 and UCF101–24 datasets, respectively. For video-mAP, we obtain 88.96 %, 85.81 % and 68.59 % at IoU threshold of 0.2,0.5 and 0.75 on JHMDB-21 dataset and 75.05 %, 69.72 % and 48.95 % at IoU threshold of 0.1,0.2 and 0.5 on UCF101–24 dataset.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109739\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624006669\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006669","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了解决人类时空动作检测任务中的低准确率问题,本研究提出了一种更有效的 CNN 框架。与 YOWO 模型一样,我们也使用 CNN 进行特征提取,但我们只将提取的时空特征用于动作识别,而将时空信息的融合特征用于动作定位。此外,在动作定位分支中,我们对原有的通道融合和注意力机制(CFAM)进行了改进。我们引入了卷积和注意力机制的组合,选择性地取代了传统的卷积,从而更有效地利用了融合后的特征。最后,为了使边界框回归模型更加精确,我们使用 CIoU 损失代替偏移损失。结果表明,我们提出的方法在 JHMDB-21 和 UCF101-24 数据集上的帧-映射得分(@IoU 0.5)分别达到 75.73 % 和 83.13 %。在视频映射率方面,当 IoU 阈值为 0.2、0.5 和 0.75 时,我们在 JHMDB-21 数据集上分别获得了 88.96 %、85.81 % 和 68.59 %;当 IoU 阈值为 0.1、0.2 和 0.5 时,我们在 UCF101-24 数据集上分别获得了 75.05 %、69.72 % 和 48.95 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal Action Detection Using 2D CNN and 3D CNN
In order to address the low accuracy issue in human spatiotemporal action detection tasks, this study proposes a more effective CNN framework. Like YOWO model, we also use CNN for feature extraction, however, we only utilize the extracted spatiotemporal features for action recognition and the fused features of spatiotemporal and spatial information for action localization. Additionally, in the action localization branch, we make improvements to the original channel fusion and attention mechanism (CFAM). We introduce a combination of convolution and attention mechanisms to selectively replace the traditional convolutions, enabling more effective utilization of the fused features. Finally, in order to make the model more accurate for bounding box regression, we use CIoU loss instead of the offset loss. Results show that our proposed method achieves frame-mAP scores (@IoU 0.5) of 75.73 % and 83.13 % on JHMDB-21 and UCF101–24 datasets, respectively. For video-mAP, we obtain 88.96 %, 85.81 % and 68.59 % at IoU threshold of 0.2,0.5 and 0.75 on JHMDB-21 dataset and 75.05 %, 69.72 % and 48.95 % at IoU threshold of 0.1,0.2 and 0.5 on UCF101–24 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信