应用于计算布劳尔字符表的新凝聚方法

Klaus Lux , A.J.E. Ryba
{"title":"应用于计算布劳尔字符表的新凝聚方法","authors":"Klaus Lux ,&nbsp;A.J.E. Ryba","doi":"10.1016/j.jaca.2024.100023","DOIUrl":null,"url":null,"abstract":"<div><div>Condensation is a technique that can often predict a Brauer character table of a finite group with a very high degree of confidence, but without a proof of correctness. In this paper we describe a strategy that can give such a proof. We introduce and apply two novel condensation methods: virtual tensor condensation and the condensation of bilinear forms. We illustrate our strategy and new techniques with examples taken from our computation of the 5-modular Brauer character table of the sporadic simple Lyons group.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"12 ","pages":"Article 100023"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New condensation methods with applications to the computation of Brauer character tables\",\"authors\":\"Klaus Lux ,&nbsp;A.J.E. Ryba\",\"doi\":\"10.1016/j.jaca.2024.100023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Condensation is a technique that can often predict a Brauer character table of a finite group with a very high degree of confidence, but without a proof of correctness. In this paper we describe a strategy that can give such a proof. We introduce and apply two novel condensation methods: virtual tensor condensation and the condensation of bilinear forms. We illustrate our strategy and new techniques with examples taken from our computation of the 5-modular Brauer character table of the sporadic simple Lyons group.</div></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"12 \",\"pages\":\"Article 100023\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

凝缩是一种技术,通常能以极高的置信度预测有限群的布劳尔特征表,但却无法证明其正确性。在本文中,我们描述了一种可以给出这种证明的策略。我们引入并应用了两种新颖的凝聚方法:虚拟张量凝聚和双线性形式凝聚。我们以计算零星简单里昂群的 5 模布劳尔特征表为例,说明我们的策略和新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New condensation methods with applications to the computation of Brauer character tables
Condensation is a technique that can often predict a Brauer character table of a finite group with a very high degree of confidence, but without a proof of correctness. In this paper we describe a strategy that can give such a proof. We introduce and apply two novel condensation methods: virtual tensor condensation and the condensation of bilinear forms. We illustrate our strategy and new techniques with examples taken from our computation of the 5-modular Brauer character table of the sporadic simple Lyons group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信