椭圆分布的双变量尾部条件共期望

IF 1.9 2区 经济学 Q2 ECONOMICS
Roy Cerqueti , Arsen Palestini
{"title":"椭圆分布的双变量尾部条件共期望","authors":"Roy Cerqueti ,&nbsp;Arsen Palestini","doi":"10.1016/j.insmatheco.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a random vector <span><math><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> following a multivariate Elliptical distribution and we provide an explicit formula for <span><math><mi>E</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></math></span>, i.e., the expected value of the bivariate random variable <em>X</em> conditioned to the event <span><math><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, with <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Such a conditional expectation has an intuitive interpretation in the context of risk measures. Specifically, <span><math><mi>E</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></math></span> can be interpreted as the Tail Conditional Co-Expectation of <em>X</em> (TCoES). Our main result analytically proves that for a large number of Elliptical distributions, the TCoES can be written as a function of the probability density function of the Skew Elliptical distributions introduced in the literature by the pioneering work of <span><span>Azzalini (1985)</span></span>. Some numerical experiments based on empirical data show the usefulness of the obtained results for real-world applications.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"119 ","pages":"Pages 251-260"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bivariate Tail Conditional Co-Expectation for elliptical distributions\",\"authors\":\"Roy Cerqueti ,&nbsp;Arsen Palestini\",\"doi\":\"10.1016/j.insmatheco.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a random vector <span><math><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math></span> following a multivariate Elliptical distribution and we provide an explicit formula for <span><math><mi>E</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></math></span>, i.e., the expected value of the bivariate random variable <em>X</em> conditioned to the event <span><math><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, with <span><math><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Such a conditional expectation has an intuitive interpretation in the context of risk measures. Specifically, <span><math><mi>E</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>X</mi><mo>≤</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></math></span> can be interpreted as the Tail Conditional Co-Expectation of <em>X</em> (TCoES). Our main result analytically proves that for a large number of Elliptical distributions, the TCoES can be written as a function of the probability density function of the Skew Elliptical distributions introduced in the literature by the pioneering work of <span><span>Azzalini (1985)</span></span>. Some numerical experiments based on empirical data show the usefulness of the obtained results for real-world applications.</div></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"119 \",\"pages\":\"Pages 251-260\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724001021\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724001021","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个服从多元椭圆分布的随机向量 X=(X1,X2),并提供了一个明确的 E(X|X≤X˜) 公式,即以事件 X≤X˜ 为条件的二元随机变量 X 的期望值,其中 X˜∈R2。这种条件期望在风险度量中有着直观的解释。具体来说,E(X|X≤X˜) 可以解释为 X 的尾部条件共同期望(TCoES)。我们的主要结果通过分析证明,对于大量椭圆分布,TCoES 可以写成 Azzalini(1985 年)开创性工作中引入的斜椭圆分布概率密度函数的函数。一些基于经验数据的数值实验表明,所获得的结果在实际应用中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bivariate Tail Conditional Co-Expectation for elliptical distributions
In this paper, we consider a random vector X=(X1,X2) following a multivariate Elliptical distribution and we provide an explicit formula for E(X|XX˜), i.e., the expected value of the bivariate random variable X conditioned to the event XX˜, with X˜R2. Such a conditional expectation has an intuitive interpretation in the context of risk measures. Specifically, E(X|XX˜) can be interpreted as the Tail Conditional Co-Expectation of X (TCoES). Our main result analytically proves that for a large number of Elliptical distributions, the TCoES can be written as a function of the probability density function of the Skew Elliptical distributions introduced in the literature by the pioneering work of Azzalini (1985). Some numerical experiments based on empirical data show the usefulness of the obtained results for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信