通过三相人工智能和机器学习技术分析杰弗里纳米流体在指数拉伸片上的非线性复杂传热 MHD 流动

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ahmad Zeeshan , Nouman Khalid , Rahmat Ellahi , M.I. Khan , Sultan Z. Alamri
{"title":"通过三相人工智能和机器学习技术分析杰弗里纳米流体在指数拉伸片上的非线性复杂传热 MHD 流动","authors":"Ahmad Zeeshan ,&nbsp;Nouman Khalid ,&nbsp;Rahmat Ellahi ,&nbsp;M.I. Khan ,&nbsp;Sultan Z. Alamri","doi":"10.1016/j.chaos.2024.115600","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to propose an innovative three-phase Artificial Intelligence (AI) and Machine Learning (ML) techniques for nonlinear dynamics for thermal analysis of magnetohydrodynamics Jeffrey nanofluid over an exponentially stretching sheet under radiation effects. An artificial intelligence-based scheme, namely Levenberg-Marquardt with back propagation Neural Network approach (LMS-BPNN), is used. Similarity transformations are used to convert nonlinear governing partial differential equations (PDEs) into ordinary differential equations (ODEs). The resulting ODEs are solved by computation software MATLAB with bvp4c solver. The accuracy of the proposed LMS-BPNN is compared with ML solution of boundary layer flow. Moreover, the effects of physical parameters on the momentum, thermal and concentration boundaries layers are examined under four scenarios. The validity and accuracy are examined with Mean Square Error (MSE), function fit, and correlation index. It is observed that the thickness of Momentum Boundary Layer (MBL) increases by increasing the order of stretching/shrinking parameter and magnetic field intensity. The temperature variation and skin fraction increase by increasing the values of Biot number and magnetic field respectively. The Artificial Neural Network (ANN) model demonstrated incredible accuracy, with an error range of <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></math></span> to <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span>. The regression values closer to 1 show that the predictions and the actual data match well, while the regression values nearer to 0 indicate that the model has difficulty in identifying the underlying patterns. It is also noted that, if the hidden layers are selected correctly, the model produces accurate results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three phase artificial intelligence and Machine Learning techniques\",\"authors\":\"Ahmad Zeeshan ,&nbsp;Nouman Khalid ,&nbsp;Rahmat Ellahi ,&nbsp;M.I. Khan ,&nbsp;Sultan Z. Alamri\",\"doi\":\"10.1016/j.chaos.2024.115600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study is to propose an innovative three-phase Artificial Intelligence (AI) and Machine Learning (ML) techniques for nonlinear dynamics for thermal analysis of magnetohydrodynamics Jeffrey nanofluid over an exponentially stretching sheet under radiation effects. An artificial intelligence-based scheme, namely Levenberg-Marquardt with back propagation Neural Network approach (LMS-BPNN), is used. Similarity transformations are used to convert nonlinear governing partial differential equations (PDEs) into ordinary differential equations (ODEs). The resulting ODEs are solved by computation software MATLAB with bvp4c solver. The accuracy of the proposed LMS-BPNN is compared with ML solution of boundary layer flow. Moreover, the effects of physical parameters on the momentum, thermal and concentration boundaries layers are examined under four scenarios. The validity and accuracy are examined with Mean Square Error (MSE), function fit, and correlation index. It is observed that the thickness of Momentum Boundary Layer (MBL) increases by increasing the order of stretching/shrinking parameter and magnetic field intensity. The temperature variation and skin fraction increase by increasing the values of Biot number and magnetic field respectively. The Artificial Neural Network (ANN) model demonstrated incredible accuracy, with an error range of <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></math></span> to <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math></span>. The regression values closer to 1 show that the predictions and the actual data match well, while the regression values nearer to 0 indicate that the model has difficulty in identifying the underlying patterns. It is also noted that, if the hidden layers are selected correctly, the model produces accurate results.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011524\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011524","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提出一种创新的三相人工智能(AI)和机器学习(ML)非线性动力学技术,用于在辐射效应下对指数拉伸片上的杰弗里纳米流体进行磁流体力学热分析。采用了一种基于人工智能的方案,即 Levenberg-Marquardt 反向传播神经网络方法(LMS-BPNN)。利用相似变换将非线性控制偏微分方程 (PDE) 转换为常微分方程 (ODE)。计算软件 MATLAB 使用 bvp4c 求解器求解得到的 ODE。将所提出的 LMS-BPNN 与边界层流动的 ML 解法进行了精度比较。此外,还考察了四种情况下物理参数对动量、热量和浓度边界层的影响。用平均平方误差(MSE)、函数拟合度和相关指数来检验其有效性和准确性。结果表明,动量边界层(MBL)的厚度随着拉伸/收缩参数和磁场强度阶数的增加而增加。温度变化和表皮分数分别随 Biot 数和磁场值的增加而增加。人工神经网络(ANN)模型的准确性令人难以置信,误差范围在 10-8 到 10-6 之间。回归值接近 1 表明预测结果与实际数据非常吻合,而回归值接近 0 则表明模型难以识别基本模式。我们还注意到,如果正确选择隐藏层,模型就能产生准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three phase artificial intelligence and Machine Learning techniques
The aim of this study is to propose an innovative three-phase Artificial Intelligence (AI) and Machine Learning (ML) techniques for nonlinear dynamics for thermal analysis of magnetohydrodynamics Jeffrey nanofluid over an exponentially stretching sheet under radiation effects. An artificial intelligence-based scheme, namely Levenberg-Marquardt with back propagation Neural Network approach (LMS-BPNN), is used. Similarity transformations are used to convert nonlinear governing partial differential equations (PDEs) into ordinary differential equations (ODEs). The resulting ODEs are solved by computation software MATLAB with bvp4c solver. The accuracy of the proposed LMS-BPNN is compared with ML solution of boundary layer flow. Moreover, the effects of physical parameters on the momentum, thermal and concentration boundaries layers are examined under four scenarios. The validity and accuracy are examined with Mean Square Error (MSE), function fit, and correlation index. It is observed that the thickness of Momentum Boundary Layer (MBL) increases by increasing the order of stretching/shrinking parameter and magnetic field intensity. The temperature variation and skin fraction increase by increasing the values of Biot number and magnetic field respectively. The Artificial Neural Network (ANN) model demonstrated incredible accuracy, with an error range of 108 to 106. The regression values closer to 1 show that the predictions and the actual data match well, while the regression values nearer to 0 indicate that the model has difficulty in identifying the underlying patterns. It is also noted that, if the hidden layers are selected correctly, the model produces accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信