无序 FPUT-α 哈密顿晶格:递归崩溃和混沌行为

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zulkarnain , H. Susanto , C.G. Antonopoulos
{"title":"无序 FPUT-α 哈密顿晶格:递归崩溃和混沌行为","authors":"Zulkarnain ,&nbsp;H. Susanto ,&nbsp;C.G. Antonopoulos","doi":"10.1016/j.chaos.2024.115570","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies a modified Fermi–Pasta–Ulam-Tsingou (FPUT)-<span><math><mi>α</mi></math></span> Hamiltonian lattice, where variability is introduced to the system through the potential parameters. By a transformation, the system is equivalent to the FPUT-<span><math><mi>α</mi></math></span> lattice with random masses. We fix the energy level and investigate how energy recurrences disappear as the percentage of variability increases from zero. We observe that the disappearance of energy recurrences leads to either localization or thermalization of normal-mode energy. When energy localization occurs, we derive a two-mode system by using multiple-scale expansions to explain the route to localization as the percentage of variability increases. Furthermore, we investigate the chaotic behavior of the system by computing the maximum Lyapunov exponent for different percentages of variability. Our results show that the number of particles increases the chances of observing chaotic dynamics for small percentages of variability. Meanwhile, the effect reverses as the percentage of variability introduced to the system rises from zero.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disordered FPUT-α Hamiltonian Lattices: Recurrence breakdown and chaotic behavior\",\"authors\":\"Zulkarnain ,&nbsp;H. Susanto ,&nbsp;C.G. Antonopoulos\",\"doi\":\"10.1016/j.chaos.2024.115570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies a modified Fermi–Pasta–Ulam-Tsingou (FPUT)-<span><math><mi>α</mi></math></span> Hamiltonian lattice, where variability is introduced to the system through the potential parameters. By a transformation, the system is equivalent to the FPUT-<span><math><mi>α</mi></math></span> lattice with random masses. We fix the energy level and investigate how energy recurrences disappear as the percentage of variability increases from zero. We observe that the disappearance of energy recurrences leads to either localization or thermalization of normal-mode energy. When energy localization occurs, we derive a two-mode system by using multiple-scale expansions to explain the route to localization as the percentage of variability increases. Furthermore, we investigate the chaotic behavior of the system by computing the maximum Lyapunov exponent for different percentages of variability. Our results show that the number of particles increases the chances of observing chaotic dynamics for small percentages of variability. Meanwhile, the effect reverses as the percentage of variability introduced to the system rises from zero.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011226\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011226","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了改进的费米-帕斯塔-乌兰-钦古(FPUT)-α 哈密顿晶格,通过势参数为系统引入了可变性。通过转换,该系统等同于具有随机质量的 FPUT-α 晶格。我们固定了能级,并研究了当变异性百分比从零开始增加时,能量复现是如何消失的。我们发现,能量递变的消失会导致正常模式能量的局部化或热化。当能量局部化发生时,我们通过使用多尺度扩展推导出一个双模式系统,以解释随着变异性百分比的增加而导致局部化的途径。此外,我们还通过计算不同变异百分比下的最大李亚普诺夫指数,研究了系统的混沌行为。我们的结果表明,在变异性百分比较小的情况下,粒子数量会增加观察到混沌动力学的机会。同时,当系统中引入的可变性百分比从零开始上升时,这种效应会发生逆转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disordered FPUT-α Hamiltonian Lattices: Recurrence breakdown and chaotic behavior
This paper studies a modified Fermi–Pasta–Ulam-Tsingou (FPUT)-α Hamiltonian lattice, where variability is introduced to the system through the potential parameters. By a transformation, the system is equivalent to the FPUT-α lattice with random masses. We fix the energy level and investigate how energy recurrences disappear as the percentage of variability increases from zero. We observe that the disappearance of energy recurrences leads to either localization or thermalization of normal-mode energy. When energy localization occurs, we derive a two-mode system by using multiple-scale expansions to explain the route to localization as the percentage of variability increases. Furthermore, we investigate the chaotic behavior of the system by computing the maximum Lyapunov exponent for different percentages of variability. Our results show that the number of particles increases the chances of observing chaotic dynamics for small percentages of variability. Meanwhile, the effect reverses as the percentage of variability introduced to the system rises from zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信