基于分数 PID 控制的多目标网络资源分配方法

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xintong Ni, Yiheng Wei, Shuaiyu Zhou, Meng Tao
{"title":"基于分数 PID 控制的多目标网络资源分配方法","authors":"Xintong Ni,&nbsp;Yiheng Wei,&nbsp;Shuaiyu Zhou,&nbsp;Meng Tao","doi":"10.1016/j.sigpro.2024.109717","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a fractional proportional–integral–derivative (PID) distributed optimization algorithm is proposed to solve the network resource allocation problem. The algorithm combines fractional calculus and the concept of PID control, which improves the convergence rate and increases the freedom, flexibility and potential with multiple parameters compared with the existing algorithms. Meanwhile, the results of simulation study verified the efficiency and superiority of the algorithm.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109717"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective network resource allocation method based on fractional PID control\",\"authors\":\"Xintong Ni,&nbsp;Yiheng Wei,&nbsp;Shuaiyu Zhou,&nbsp;Meng Tao\",\"doi\":\"10.1016/j.sigpro.2024.109717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a fractional proportional–integral–derivative (PID) distributed optimization algorithm is proposed to solve the network resource allocation problem. The algorithm combines fractional calculus and the concept of PID control, which improves the convergence rate and increases the freedom, flexibility and potential with multiple parameters compared with the existing algorithms. Meanwhile, the results of simulation study verified the efficiency and superiority of the algorithm.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109717\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003372\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003372","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种分数比例积分派生(PID)分布式优化算法来解决网络资源分配问题。该算法结合了分数微积分和 PID 控制的概念,与现有算法相比,提高了收敛速度,增加了多参数的自由度、灵活性和潜力。同时,仿真研究结果验证了该算法的高效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective network resource allocation method based on fractional PID control
In this paper, a fractional proportional–integral–derivative (PID) distributed optimization algorithm is proposed to solve the network resource allocation problem. The algorithm combines fractional calculus and the concept of PID control, which improves the convergence rate and increases the freedom, flexibility and potential with multiple parameters compared with the existing algorithms. Meanwhile, the results of simulation study verified the efficiency and superiority of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信