{"title":"快速和增强稀疏选择的尾部ℓ2 最小化分析","authors":"Menglin Ye , Shidong Li , Cheng Cheng , Jun Xian","doi":"10.1016/j.sigpro.2024.109728","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the effectiveness and efficiency of the iterative tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> minimization (tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min) technique for its sparse selection capabilities. We conduct profile analyses on the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min, establishing the equivalence of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min problem to a two-stage profile <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> formulation, both featuring analytical solutions. The tail null space property (NSP) of sensing matrix <span><math><mi>A</mi></math></span> is shown to be equivalent to the NSP of the newly defined profile matrix <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. Besides the error bound analysis for the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min under the typical tail-NSP condition, a novel error bound of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min formulation is also established without relying on NSP or restricted isometry property (RIP) assumptions. It merely contains tractable coefficients of <span><math><mi>A</mi></math></span>, and offers insights into successful recovery, with the observation of the convergent iterative procedure. Numerical studies and the applications to image reconstruction demonstrate the superiority and fast convergence of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sparse solution over state-of-the-art sparse selection methodologies. The sparsity level of a signal that the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> profile algorithm guarantees the recovery is around 41% higher than that of the basis pursuit algorithm. The analytical solutions of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> method at each iteration also ensure that the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sparse recovery process is notably fast, especially for high dimensions and high sparsity levels.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109728"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyses of the tail-ℓ2 minimization for fast and enhanced sparse selections\",\"authors\":\"Menglin Ye , Shidong Li , Cheng Cheng , Jun Xian\",\"doi\":\"10.1016/j.sigpro.2024.109728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the effectiveness and efficiency of the iterative tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> minimization (tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min) technique for its sparse selection capabilities. We conduct profile analyses on the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min, establishing the equivalence of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min problem to a two-stage profile <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> formulation, both featuring analytical solutions. The tail null space property (NSP) of sensing matrix <span><math><mi>A</mi></math></span> is shown to be equivalent to the NSP of the newly defined profile matrix <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. Besides the error bound analysis for the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min under the typical tail-NSP condition, a novel error bound of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-min formulation is also established without relying on NSP or restricted isometry property (RIP) assumptions. It merely contains tractable coefficients of <span><math><mi>A</mi></math></span>, and offers insights into successful recovery, with the observation of the convergent iterative procedure. Numerical studies and the applications to image reconstruction demonstrate the superiority and fast convergence of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sparse solution over state-of-the-art sparse selection methodologies. The sparsity level of a signal that the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> profile algorithm guarantees the recovery is around 41% higher than that of the basis pursuit algorithm. The analytical solutions of the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> method at each iteration also ensure that the tail-<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> sparse recovery process is notably fast, especially for high dimensions and high sparsity levels.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109728\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003487\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analyses of the tail-ℓ2 minimization for fast and enhanced sparse selections
We investigate the effectiveness and efficiency of the iterative tail- minimization (tail--min) technique for its sparse selection capabilities. We conduct profile analyses on the tail--min, establishing the equivalence of the tail--min problem to a two-stage profile formulation, both featuring analytical solutions. The tail null space property (NSP) of sensing matrix is shown to be equivalent to the NSP of the newly defined profile matrix . Besides the error bound analysis for the tail--min under the typical tail-NSP condition, a novel error bound of the tail--min formulation is also established without relying on NSP or restricted isometry property (RIP) assumptions. It merely contains tractable coefficients of , and offers insights into successful recovery, with the observation of the convergent iterative procedure. Numerical studies and the applications to image reconstruction demonstrate the superiority and fast convergence of the tail- sparse solution over state-of-the-art sparse selection methodologies. The sparsity level of a signal that the tail- profile algorithm guarantees the recovery is around 41% higher than that of the basis pursuit algorithm. The analytical solutions of the tail- method at each iteration also ensure that the tail- sparse recovery process is notably fast, especially for high dimensions and high sparsity levels.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.