Eva Gregorová , Willi Pabst , Petra Šimonová , Vojtěch Nečina , Lucie Kotrbová , Petr Bezdička , Jana Hubálková , Gert Schmidt , Christos G. Aneziris , Ivona Sedlářová , Miroslav Kotouček
{"title":"用于高温热能储存(TES)的二氧化硅耐火材料在反复热循环过程中的杨氏模量、阻尼和膨胀与温度的关系","authors":"Eva Gregorová , Willi Pabst , Petra Šimonová , Vojtěch Nečina , Lucie Kotrbová , Petr Bezdička , Jana Hubálková , Gert Schmidt , Christos G. Aneziris , Ivona Sedlářová , Miroslav Kotouček","doi":"10.1016/j.jeurceramsoc.2024.116946","DOIUrl":null,"url":null,"abstract":"<div><div>Silica refractories are traditional materials for several important niche applications (e.g. coke oven linings and glass melter roofs) but are also potential candidates for modern high-temperature thermal energy storage. For this application all aspects of its high-temperature behavior must be thoroughly known. In this paper the temperature dependence of Young’s modulus and damping of silica refractories is investigated via impulse excitation during (three times repeated) heating to 900, 1100, 1300 and 1500 °C and cooling back to room temperature. Apart from the well-known hysteresis effects, induced by changes in the phase composition (based on tridymite and cristobalite) and microstructure (crack closure and re-opening), it is shown that cycling to 900 and 1100 °C leads to damage accumulation, while heating to 1300 and 1500 °C does not, and in the latter case a new type of elastic anomaly is observed during reheating. Damping and hysteresis parameters are discussed as well.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of Young’s modulus, damping and dilatation during repeated thermal cycling of silica refractories for high-temperature thermal energy storage (TES)\",\"authors\":\"Eva Gregorová , Willi Pabst , Petra Šimonová , Vojtěch Nečina , Lucie Kotrbová , Petr Bezdička , Jana Hubálková , Gert Schmidt , Christos G. Aneziris , Ivona Sedlářová , Miroslav Kotouček\",\"doi\":\"10.1016/j.jeurceramsoc.2024.116946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silica refractories are traditional materials for several important niche applications (e.g. coke oven linings and glass melter roofs) but are also potential candidates for modern high-temperature thermal energy storage. For this application all aspects of its high-temperature behavior must be thoroughly known. In this paper the temperature dependence of Young’s modulus and damping of silica refractories is investigated via impulse excitation during (three times repeated) heating to 900, 1100, 1300 and 1500 °C and cooling back to room temperature. Apart from the well-known hysteresis effects, induced by changes in the phase composition (based on tridymite and cristobalite) and microstructure (crack closure and re-opening), it is shown that cycling to 900 and 1100 °C leads to damage accumulation, while heating to 1300 and 1500 °C does not, and in the latter case a new type of elastic anomaly is observed during reheating. Damping and hysteresis parameters are discussed as well.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221924008197\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Temperature dependence of Young’s modulus, damping and dilatation during repeated thermal cycling of silica refractories for high-temperature thermal energy storage (TES)
Silica refractories are traditional materials for several important niche applications (e.g. coke oven linings and glass melter roofs) but are also potential candidates for modern high-temperature thermal energy storage. For this application all aspects of its high-temperature behavior must be thoroughly known. In this paper the temperature dependence of Young’s modulus and damping of silica refractories is investigated via impulse excitation during (three times repeated) heating to 900, 1100, 1300 and 1500 °C and cooling back to room temperature. Apart from the well-known hysteresis effects, induced by changes in the phase composition (based on tridymite and cristobalite) and microstructure (crack closure and re-opening), it is shown that cycling to 900 and 1100 °C leads to damage accumulation, while heating to 1300 and 1500 °C does not, and in the latter case a new type of elastic anomaly is observed during reheating. Damping and hysteresis parameters are discussed as well.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.