Wonhyeong Lee , Jeongwoo Lee , Kwangbum Kim , Yun-Ho Ahn , Jae W. Lee
{"title":"二元 SF6-N2O 水合物的热力学相平衡及其基于水合物的温室气体捕获结构分析","authors":"Wonhyeong Lee , Jeongwoo Lee , Kwangbum Kim , Yun-Ho Ahn , Jae W. Lee","doi":"10.1016/j.fluid.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing greenhouse gas (GHG) emissions from industrial activities have driven the development of efficient and environmentally safe GHG capture technologies. Clathrate hydrates, primarily composed of water, have attracted significant attention for their potential in GHG capture due to their ability to manage large emissions and their environmental advantages over materials like amine-based sorbents and metal-organic frameworks. This study investigates the hydrate-based capture of SF<sub>6</sub> and N<sub>2</sub>O, two potent GHGs, to develop an effective GHG capture process. Phase equilibrium measurements demonstrate that binary SF<sub>6</sub>-N<sub>2</sub>O hydrates can form under moderate thermodynamic conditions, even with a small proportion of SF<sub>6</sub>, highlighting the feasibility of using hydrate-based methods to capture GHG mixtures. Furthermore, the formation of binary SF<sub>6</sub>-N<sub>2</sub>O hydrates enhances GHG volumetric storage capacity compared to pure SF<sub>6</sub> hydrates. The guest compositions calculated for each binary SF<sub>6</sub>-N<sub>2</sub>O hydrate phase, along with spectroscopic analyses (Powder X-Ray Diffraction and Raman spectroscopy), confirm that the high GHG uptake in binary hydrates results from N<sub>2</sub>O molecules occupying the small cages of structure II hydrates, which are inaccessible to the larger SF<sub>6</sub> molecules. These findings suggest that both the small and large cages of sII hydrates can be practically utilized for efficient capture of GHG mixture (SF<sub>6</sub> and N<sub>2</sub>O) under mild conditions, thereby increasing the storage density of GHGs within the hydrate structure.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114238"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic phase equilibria of binary SF6–N2O hydrates and their structural analysis for the hydrate-based greenhouse gas capture\",\"authors\":\"Wonhyeong Lee , Jeongwoo Lee , Kwangbum Kim , Yun-Ho Ahn , Jae W. Lee\",\"doi\":\"10.1016/j.fluid.2024.114238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing greenhouse gas (GHG) emissions from industrial activities have driven the development of efficient and environmentally safe GHG capture technologies. Clathrate hydrates, primarily composed of water, have attracted significant attention for their potential in GHG capture due to their ability to manage large emissions and their environmental advantages over materials like amine-based sorbents and metal-organic frameworks. This study investigates the hydrate-based capture of SF<sub>6</sub> and N<sub>2</sub>O, two potent GHGs, to develop an effective GHG capture process. Phase equilibrium measurements demonstrate that binary SF<sub>6</sub>-N<sub>2</sub>O hydrates can form under moderate thermodynamic conditions, even with a small proportion of SF<sub>6</sub>, highlighting the feasibility of using hydrate-based methods to capture GHG mixtures. Furthermore, the formation of binary SF<sub>6</sub>-N<sub>2</sub>O hydrates enhances GHG volumetric storage capacity compared to pure SF<sub>6</sub> hydrates. The guest compositions calculated for each binary SF<sub>6</sub>-N<sub>2</sub>O hydrate phase, along with spectroscopic analyses (Powder X-Ray Diffraction and Raman spectroscopy), confirm that the high GHG uptake in binary hydrates results from N<sub>2</sub>O molecules occupying the small cages of structure II hydrates, which are inaccessible to the larger SF<sub>6</sub> molecules. These findings suggest that both the small and large cages of sII hydrates can be practically utilized for efficient capture of GHG mixture (SF<sub>6</sub> and N<sub>2</sub>O) under mild conditions, thereby increasing the storage density of GHGs within the hydrate structure.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"588 \",\"pages\":\"Article 114238\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224002139\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002139","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermodynamic phase equilibria of binary SF6–N2O hydrates and their structural analysis for the hydrate-based greenhouse gas capture
The increasing greenhouse gas (GHG) emissions from industrial activities have driven the development of efficient and environmentally safe GHG capture technologies. Clathrate hydrates, primarily composed of water, have attracted significant attention for their potential in GHG capture due to their ability to manage large emissions and their environmental advantages over materials like amine-based sorbents and metal-organic frameworks. This study investigates the hydrate-based capture of SF6 and N2O, two potent GHGs, to develop an effective GHG capture process. Phase equilibrium measurements demonstrate that binary SF6-N2O hydrates can form under moderate thermodynamic conditions, even with a small proportion of SF6, highlighting the feasibility of using hydrate-based methods to capture GHG mixtures. Furthermore, the formation of binary SF6-N2O hydrates enhances GHG volumetric storage capacity compared to pure SF6 hydrates. The guest compositions calculated for each binary SF6-N2O hydrate phase, along with spectroscopic analyses (Powder X-Ray Diffraction and Raman spectroscopy), confirm that the high GHG uptake in binary hydrates results from N2O molecules occupying the small cages of structure II hydrates, which are inaccessible to the larger SF6 molecules. These findings suggest that both the small and large cages of sII hydrates can be practically utilized for efficient capture of GHG mixture (SF6 and N2O) under mild conditions, thereby increasing the storage density of GHGs within the hydrate structure.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.