无标度网络上的随机 SIR 流行病模型动力学

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
A. Settati , T. Caraballo , A. Lahrouz , I. Bouzalmat , A. Assadouq
{"title":"无标度网络上的随机 SIR 流行病模型动力学","authors":"A. Settati ,&nbsp;T. Caraballo ,&nbsp;A. Lahrouz ,&nbsp;I. Bouzalmat ,&nbsp;A. Assadouq","doi":"10.1016/j.matcom.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a stochastic SIR (Susceptible–Infectious–Recovered) model on complex networks, utilizing a scale-free network to represent inter-human contacts. The model incorporates a threshold parameter, denoted as <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>, which plays a decisive role in determining whether the disease will persist or become extinct. When <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the disease exhibits exponential decay and eventually disappear. Conversely, when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the disease persists. The critical case of <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> is also examined. Furthermore, we establish a unique stationary distribution for <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Our findings highlight the significance of network topology in modeling disease spread, emphasizing the role of social networks in epidemiology. Additionally, we present computational simulations that consider the scale-free network’s topology, offering comprehensive insights into the behavior of the stochastic SIR model on complex networks. These results have substantial implications for public health policy, disease control strategies, and epidemic modeling in diverse contexts.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic SIR epidemic model dynamics on scale-free networks\",\"authors\":\"A. Settati ,&nbsp;T. Caraballo ,&nbsp;A. Lahrouz ,&nbsp;I. Bouzalmat ,&nbsp;A. Assadouq\",\"doi\":\"10.1016/j.matcom.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a stochastic SIR (Susceptible–Infectious–Recovered) model on complex networks, utilizing a scale-free network to represent inter-human contacts. The model incorporates a threshold parameter, denoted as <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>, which plays a decisive role in determining whether the disease will persist or become extinct. When <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the disease exhibits exponential decay and eventually disappear. Conversely, when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the disease persists. The critical case of <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> is also examined. Furthermore, we establish a unique stationary distribution for <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Our findings highlight the significance of network topology in modeling disease spread, emphasizing the role of social networks in epidemiology. Additionally, we present computational simulations that consider the scale-free network’s topology, offering comprehensive insights into the behavior of the stochastic SIR model on complex networks. These results have substantial implications for public health policy, disease control strategies, and epidemic modeling in diverse contexts.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003823\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003823","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究在复杂网络上引入了一个随机 SIR(易感-传染-复发)模型,利用无标度网络来表示人类之间的接触。该模型包含一个阈值参数(用 Rσ 表示),它在决定疾病是持续存在还是灭绝方面起着决定性作用。当 Rσ<1 时,疾病呈指数衰减并最终消失。相反,当 Rσ>1 时,疾病持续存在。我们还研究了 Rσ=1 的临界情况。我们的研究结果突出了网络拓扑在模拟疾病传播中的重要性,强调了社会网络在流行病学中的作用。此外,我们还提出了考虑无标度网络拓扑结构的计算模拟,为随机 SIR 模型在复杂网络中的行为提供了全面的见解。这些结果对公共卫生政策、疾病控制策略和不同背景下的流行病建模具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic SIR epidemic model dynamics on scale-free networks
This study introduces a stochastic SIR (Susceptible–Infectious–Recovered) model on complex networks, utilizing a scale-free network to represent inter-human contacts. The model incorporates a threshold parameter, denoted as Rσ, which plays a decisive role in determining whether the disease will persist or become extinct. When Rσ<1, the disease exhibits exponential decay and eventually disappear. Conversely, when Rσ>1, the disease persists. The critical case of Rσ=1 is also examined. Furthermore, we establish a unique stationary distribution for Rσ>1. Our findings highlight the significance of network topology in modeling disease spread, emphasizing the role of social networks in epidemiology. Additionally, we present computational simulations that consider the scale-free network’s topology, offering comprehensive insights into the behavior of the stochastic SIR model on complex networks. These results have substantial implications for public health policy, disease control strategies, and epidemic modeling in diverse contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信