Xue Li , Yating Zhang , Keke Li , Yanping Hu , Youyu Zhu , Yicheng Wang , Yuan Liu
{"title":"为钠离子电池阳极设计具有高初始库仑效率的交联硬碳","authors":"Xue Li , Yating Zhang , Keke Li , Yanping Hu , Youyu Zhu , Yicheng Wang , Yuan Liu","doi":"10.1016/j.cplett.2024.141651","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-linked hard carbon materials (SFC<sub>z</sub>GLC<sub>1</sub>) were prepared from Shenfu bituminous coal (SFC) and glucose (GLC) via a one-step carbonization method. The relationship between the microstructure and Na<sup>+</sup> storage behavior was explored. The initial coulombic efficiency (ICE) was related to surface defects. Owing to abundant porous structure and low defects, SFC<sub>3</sub>GLC<sub>1</sub> delivered the highest reversible capacity of 413.1 mAh/g at 0.02 A/g with ICE ∼84 % and excellent cycling stability (89.4 % capacity retention over 200 cycles). This work provides a facile route to develop high-performance, low-cost carbon-based anodes for next-generation sodium-ion batteries (SIBs).</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"856 ","pages":"Article 141651"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of cross-linked hard carbon with high initial coulombic efficiency for sodium-ion batteries anode\",\"authors\":\"Xue Li , Yating Zhang , Keke Li , Yanping Hu , Youyu Zhu , Yicheng Wang , Yuan Liu\",\"doi\":\"10.1016/j.cplett.2024.141651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-linked hard carbon materials (SFC<sub>z</sub>GLC<sub>1</sub>) were prepared from Shenfu bituminous coal (SFC) and glucose (GLC) via a one-step carbonization method. The relationship between the microstructure and Na<sup>+</sup> storage behavior was explored. The initial coulombic efficiency (ICE) was related to surface defects. Owing to abundant porous structure and low defects, SFC<sub>3</sub>GLC<sub>1</sub> delivered the highest reversible capacity of 413.1 mAh/g at 0.02 A/g with ICE ∼84 % and excellent cycling stability (89.4 % capacity retention over 200 cycles). This work provides a facile route to develop high-performance, low-cost carbon-based anodes for next-generation sodium-ion batteries (SIBs).</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"856 \",\"pages\":\"Article 141651\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424005931\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424005931","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design of cross-linked hard carbon with high initial coulombic efficiency for sodium-ion batteries anode
Cross-linked hard carbon materials (SFCzGLC1) were prepared from Shenfu bituminous coal (SFC) and glucose (GLC) via a one-step carbonization method. The relationship between the microstructure and Na+ storage behavior was explored. The initial coulombic efficiency (ICE) was related to surface defects. Owing to abundant porous structure and low defects, SFC3GLC1 delivered the highest reversible capacity of 413.1 mAh/g at 0.02 A/g with ICE ∼84 % and excellent cycling stability (89.4 % capacity retention over 200 cycles). This work provides a facile route to develop high-performance, low-cost carbon-based anodes for next-generation sodium-ion batteries (SIBs).
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.