Fang Wen, Yao Chen, Yun Bai, Qiaozhen Zhu, Ninghai Li
{"title":"城市轨道交通列车服务末期的时刻表编制,兼顾乘客可达性和运营成本:先进的弯曲分解算法","authors":"Fang Wen, Yao Chen, Yun Bai, Qiaozhen Zhu, Ninghai Li","doi":"10.1016/j.trb.2024.103094","DOIUrl":null,"url":null,"abstract":"<div><div>Train timetable during the end-of-service period is crucial for passenger accessibility and operation cost in urban rail transit networks. Existing studies have investigated the last train timetabling problem for improving passenger accessibility. This study investigates a train timetabling problem for the end-of-service period, which concentrates on the coordination of the service ending time on different lines and the last several train timetables. A mixed-integer linear programming model based on a space–time network is proposed to determine the number of train services provided in the end-of-service period while coordinating the timetables of both last and non-last trains, of which the objective function minimizes the number of inaccessible passengers and operation costs. To address the computational challenges, a Benders decomposition algorithm is developed and enhanced with dedicated acceleration strategies. A dual solution algorithm is proposed to efficiently generate the optimal dual solution of the subproblems. A reformulation and update strategy is proposed for the Benders cuts, and a relax-and-fix heuristic is developed to improve solving efficiency of the master problem. Small-scale numerical experiments demonstrate the optimality and efficiency of the proposed Benders decomposition algorithm. Large-scale experiments in the Wuhan network show that the proposed model and algorithm can improve passenger accessibility by 6.8% without additional operation cost, and by 38.7% with a 28.4% increment in operation cost.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"190 ","pages":"Article 103094"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban rail train timetabling for the end-of-service period with passenger accessibility and operation cost: An advanced benders decomposition algorithm\",\"authors\":\"Fang Wen, Yao Chen, Yun Bai, Qiaozhen Zhu, Ninghai Li\",\"doi\":\"10.1016/j.trb.2024.103094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Train timetable during the end-of-service period is crucial for passenger accessibility and operation cost in urban rail transit networks. Existing studies have investigated the last train timetabling problem for improving passenger accessibility. This study investigates a train timetabling problem for the end-of-service period, which concentrates on the coordination of the service ending time on different lines and the last several train timetables. A mixed-integer linear programming model based on a space–time network is proposed to determine the number of train services provided in the end-of-service period while coordinating the timetables of both last and non-last trains, of which the objective function minimizes the number of inaccessible passengers and operation costs. To address the computational challenges, a Benders decomposition algorithm is developed and enhanced with dedicated acceleration strategies. A dual solution algorithm is proposed to efficiently generate the optimal dual solution of the subproblems. A reformulation and update strategy is proposed for the Benders cuts, and a relax-and-fix heuristic is developed to improve solving efficiency of the master problem. Small-scale numerical experiments demonstrate the optimality and efficiency of the proposed Benders decomposition algorithm. Large-scale experiments in the Wuhan network show that the proposed model and algorithm can improve passenger accessibility by 6.8% without additional operation cost, and by 38.7% with a 28.4% increment in operation cost.</div></div>\",\"PeriodicalId\":54418,\"journal\":{\"name\":\"Transportation Research Part B-Methodological\",\"volume\":\"190 \",\"pages\":\"Article 103094\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part B-Methodological\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191261524002182\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524002182","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Urban rail train timetabling for the end-of-service period with passenger accessibility and operation cost: An advanced benders decomposition algorithm
Train timetable during the end-of-service period is crucial for passenger accessibility and operation cost in urban rail transit networks. Existing studies have investigated the last train timetabling problem for improving passenger accessibility. This study investigates a train timetabling problem for the end-of-service period, which concentrates on the coordination of the service ending time on different lines and the last several train timetables. A mixed-integer linear programming model based on a space–time network is proposed to determine the number of train services provided in the end-of-service period while coordinating the timetables of both last and non-last trains, of which the objective function minimizes the number of inaccessible passengers and operation costs. To address the computational challenges, a Benders decomposition algorithm is developed and enhanced with dedicated acceleration strategies. A dual solution algorithm is proposed to efficiently generate the optimal dual solution of the subproblems. A reformulation and update strategy is proposed for the Benders cuts, and a relax-and-fix heuristic is developed to improve solving efficiency of the master problem. Small-scale numerical experiments demonstrate the optimality and efficiency of the proposed Benders decomposition algorithm. Large-scale experiments in the Wuhan network show that the proposed model and algorithm can improve passenger accessibility by 6.8% without additional operation cost, and by 38.7% with a 28.4% increment in operation cost.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.