Jonathan A.S. Lima , Cristiano J. Miosso , Mylène C.Q. Farias
{"title":"SynFlowMap:用于视频运动放大的同步光流重映射","authors":"Jonathan A.S. Lima , Cristiano J. Miosso , Mylène C.Q. Farias","doi":"10.1016/j.image.2024.117203","DOIUrl":null,"url":null,"abstract":"<div><div>Motion magnification refers to the process of spatially amplifying small movements in a video to reveal important information about a scene. Several motion magnification methods have been proposed, but most of them introduce perceptible and annoying visual artifacts. In this paper, we propose a method that first analyzes the optical flow between the original frame and the corresponding frames, which are motion-magnified with other methods. Then, the method uses the generated optical flow map and the original video to synthesize a combined motion-magnified video. The method is able to amplify the motion by larger values, invert the direction of the motion, and combine filtered motion from multiple frequencies and Eulerian methods. Amongst other advantages, the proposed approach eliminates artifacts caused by Eulerian motion-magnification methods. We present an extensive qualitative and quantitative analysis of the results compared to the main approaches for Eulerian methods. A final contribution of this work is a new video database for motion magnification that allows the evaluation of quantitative motion magnification.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117203"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynFlowMap: A synchronized optical flow remapping for video motion magnification\",\"authors\":\"Jonathan A.S. Lima , Cristiano J. Miosso , Mylène C.Q. Farias\",\"doi\":\"10.1016/j.image.2024.117203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motion magnification refers to the process of spatially amplifying small movements in a video to reveal important information about a scene. Several motion magnification methods have been proposed, but most of them introduce perceptible and annoying visual artifacts. In this paper, we propose a method that first analyzes the optical flow between the original frame and the corresponding frames, which are motion-magnified with other methods. Then, the method uses the generated optical flow map and the original video to synthesize a combined motion-magnified video. The method is able to amplify the motion by larger values, invert the direction of the motion, and combine filtered motion from multiple frequencies and Eulerian methods. Amongst other advantages, the proposed approach eliminates artifacts caused by Eulerian motion-magnification methods. We present an extensive qualitative and quantitative analysis of the results compared to the main approaches for Eulerian methods. A final contribution of this work is a new video database for motion magnification that allows the evaluation of quantitative motion magnification.</div></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117203\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SynFlowMap: A synchronized optical flow remapping for video motion magnification
Motion magnification refers to the process of spatially amplifying small movements in a video to reveal important information about a scene. Several motion magnification methods have been proposed, but most of them introduce perceptible and annoying visual artifacts. In this paper, we propose a method that first analyzes the optical flow between the original frame and the corresponding frames, which are motion-magnified with other methods. Then, the method uses the generated optical flow map and the original video to synthesize a combined motion-magnified video. The method is able to amplify the motion by larger values, invert the direction of the motion, and combine filtered motion from multiple frequencies and Eulerian methods. Amongst other advantages, the proposed approach eliminates artifacts caused by Eulerian motion-magnification methods. We present an extensive qualitative and quantitative analysis of the results compared to the main approaches for Eulerian methods. A final contribution of this work is a new video database for motion magnification that allows the evaluation of quantitative motion magnification.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.