带有广义平流项的平流扩散方程:拟合优度分析与实例

Tetyana Malysheva , Luther W. White
{"title":"带有广义平流项的平流扩散方程:拟合优度分析与实例","authors":"Tetyana Malysheva ,&nbsp;Luther W. White","doi":"10.1016/j.exco.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a Cauchy–Dirichlet problem for a semilinear advection–diffusion equation with a generalized advection term. Specific examples include an incision–diffusion landscape evolution model and a viscous Hamilton–Jacobi equation with an absorbing gradient term. We establish existence and uniqueness of a weak solution and its continuous dependence on initial data and a source term.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100159"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An advection–diffusion equation with a generalized advection term: Well-posedness analysis and examples\",\"authors\":\"Tetyana Malysheva ,&nbsp;Luther W. White\",\"doi\":\"10.1016/j.exco.2024.100159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a Cauchy–Dirichlet problem for a semilinear advection–diffusion equation with a generalized advection term. Specific examples include an incision–diffusion landscape evolution model and a viscous Hamilton–Jacobi equation with an absorbing gradient term. We establish existence and uniqueness of a weak solution and its continuous dependence on initial data and a source term.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"6 \",\"pages\":\"Article 100159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是带有广义平流项的半线性平流-扩散方程的 Cauchy-Dirichlet 问题。具体例子包括切入-扩散景观演化模型和带有吸收梯度项的粘性 Hamilton-Jacobi 方程。我们确定了弱解的存在性和唯一性及其对初始数据和源项的连续依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An advection–diffusion equation with a generalized advection term: Well-posedness analysis and examples
We consider a Cauchy–Dirichlet problem for a semilinear advection–diffusion equation with a generalized advection term. Specific examples include an incision–diffusion landscape evolution model and a viscous Hamilton–Jacobi equation with an absorbing gradient term. We establish existence and uniqueness of a weak solution and its continuous dependence on initial data and a source term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信