从电子的几何相貌看物质中电荷中心的分布

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Joyeta Saha, Sujith Nedungattil Subrahmanian, Joydeep Bhattacharjee
{"title":"从电子的几何相貌看物质中电荷中心的分布","authors":"Joyeta Saha, Sujith Nedungattil Subrahmanian, Joydeep Bhattacharjee","doi":"10.1021/acs.jpcc.4c05248","DOIUrl":null,"url":null,"abstract":"Based on the geometric phases of Bloch electrons, we propose a scheme for the unambiguous spatial partitioning of charge in matter from first-principles, derivable directly from the Kohn–Sham states. Generalizing the fact that geometric phases acquired by electrons, due to the evolution of their crystal momentum <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.026em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑘</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\"><span style=\"\"><span style=\"font-family: STIXMathJax_Main;\">→</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi>k</mi><mo>→</mo></mover></math></script> in any arbitrary direction throughout the Brillouin zone (BZ), render the location of their spatial localization with net minimum spread along the direction in real space reciprocal to that of the evolution of <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.026em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑘</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\"><span style=\"\"><span style=\"font-family: STIXMathJax_Main;\">→</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi>k</mi><mo>→</mo></mover></math></script>, we find that the total charge can be meaningfully distributed into centers of a class of correlated hermaphrodite Wannier functions simultaneously contributed by electrons with their crystal momenta evolving linearly independently through each unique <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.026em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑘</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\"><span style=\"\"><span style=\"font-family: STIXMathJax_Main;\">→</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi>k</mi><mo>→</mo></mover></math></script> across the BZ. The resultant map of charge centers readily renders not only the qualitative nature of interatomic as well as intra-atomic hybridization of electrons but also unbiased quantitative estimates of electrons that can be associated with atoms or shared between them, as demonstrated in a selected variety of isolated and periodic systems with varying degrees of sharing of valence electrons among atoms, including variants of multicentered bonds.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"26 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Charge Centers in Matter from Geometric Phases of Electrons\",\"authors\":\"Joyeta Saha, Sujith Nedungattil Subrahmanian, Joydeep Bhattacharjee\",\"doi\":\"10.1021/acs.jpcc.4c05248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the geometric phases of Bloch electrons, we propose a scheme for the unambiguous spatial partitioning of charge in matter from first-principles, derivable directly from the Kohn–Sham states. Generalizing the fact that geometric phases acquired by electrons, due to the evolution of their crystal momentum <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.026em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\\\"><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝑘</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\\\"><span style=\\\"\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">→</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi>k</mi><mo>→</mo></mover></math></script> in any arbitrary direction throughout the Brillouin zone (BZ), render the location of their spatial localization with net minimum spread along the direction in real space reciprocal to that of the evolution of <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.026em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\\\"><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝑘</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\\\"><span style=\\\"\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">→</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi>k</mi><mo>→</mo></mover></math></script>, we find that the total charge can be meaningfully distributed into centers of a class of correlated hermaphrodite Wannier functions simultaneously contributed by electrons with their crystal momenta evolving linearly independently through each unique <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mover&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&amp;#x2192;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.026em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(0.798em, 1000.86em, 2.332em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.51em, 4.151em, -999.997em); top: -3.974em; left: 0.173em;\\\"><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝑘</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.355em, 1000.86em, 4.094em, -999.997em); top: -4.713em; left: 0em;\\\"><span style=\\\"\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">→</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.441em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover><mi>k</mi><mo>→</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mover><mi>k</mi><mo>→</mo></mover></math></script> across the BZ. The resultant map of charge centers readily renders not only the qualitative nature of interatomic as well as intra-atomic hybridization of electrons but also unbiased quantitative estimates of electrons that can be associated with atoms or shared between them, as demonstrated in a selected variety of isolated and periodic systems with varying degrees of sharing of valence electrons among atoms, including variants of multicentered bonds.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c05248\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05248","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于布洛赫电子的几何相位,我们提出了一种从第一原理出发、可直接从科恩-沙姆状态推导出的物质中电荷的明确空间划分方案。由于电子的晶体动量𝑘→k→k→在整个布里渊区(BZ)内任意方向上的演化,电子获得了几何相,这使得电子的空间定位位置在实际空间中沿𝑘→k→k→演化方向的净最小散布与𝑘→k→k→的演化方向互为倒数、我们发现,总电荷可以有意义地分布到一类相关的雌雄同体万尼尔函数的中心,这些函数是由电子同时贡献的,它们的晶体力矩通过 BZ 上每一个独特的𝑘→k→k→线性独立演化。由此绘制的电荷中心图不仅能轻松显示电子在原子间和原子内杂化的定性性质,而且还能对与原子相关联或原子间共享的电子进行无偏的定量估计,这一点已在原子间共享价电子程度不同的多种孤立和周期系统(包括多中心键的变体)中得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distribution of Charge Centers in Matter from Geometric Phases of Electrons

Distribution of Charge Centers in Matter from Geometric Phases of Electrons
Based on the geometric phases of Bloch electrons, we propose a scheme for the unambiguous spatial partitioning of charge in matter from first-principles, derivable directly from the Kohn–Sham states. Generalizing the fact that geometric phases acquired by electrons, due to the evolution of their crystal momentum k in any arbitrary direction throughout the Brillouin zone (BZ), render the location of their spatial localization with net minimum spread along the direction in real space reciprocal to that of the evolution of k, we find that the total charge can be meaningfully distributed into centers of a class of correlated hermaphrodite Wannier functions simultaneously contributed by electrons with their crystal momenta evolving linearly independently through each unique k across the BZ. The resultant map of charge centers readily renders not only the qualitative nature of interatomic as well as intra-atomic hybridization of electrons but also unbiased quantitative estimates of electrons that can be associated with atoms or shared between them, as demonstrated in a selected variety of isolated and periodic systems with varying degrees of sharing of valence electrons among atoms, including variants of multicentered bonds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信