{"title":"具有可变排序结构的集值优化问题的近似弱效率","authors":"Zhiang Zhou, Wenbin Wei, Fei Huang, Kequan Zhao","doi":"10.1007/s10878-024-01211-0","DOIUrl":null,"url":null,"abstract":"<p>In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near <span>\\(\\mathcal {D}(\\cdot )\\)</span>-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate weak efficiency of the set-valued optimization problem with variable ordering structures\",\"authors\":\"Zhiang Zhou, Wenbin Wei, Fei Huang, Kequan Zhao\",\"doi\":\"10.1007/s10878-024-01211-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near <span>\\\\(\\\\mathcal {D}(\\\\cdot )\\\\)</span>-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01211-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01211-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Approximate weak efficiency of the set-valued optimization problem with variable ordering structures
In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near \(\mathcal {D}(\cdot )\)-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.