飞秒激光直写波导中的光子拓扑绝缘体

Wenchao Yan, Bin Zhang, Feng Chen
{"title":"飞秒激光直写波导中的光子拓扑绝缘体","authors":"Wenchao Yan, Bin Zhang, Feng Chen","doi":"10.1038/s44310-024-00040-7","DOIUrl":null,"url":null,"abstract":"Topological photonics attract significant interests due to their intriguing fundamental physics and potential applications. Researchers are actively exploring various artificial platforms to realize novel topological phenomena, which provides promising pathways for the development of robust photonic devices. Among these platforms, femtosecond laser direct-written photonic waveguides show unique ability to visualize intricate light dynamics in 2 + 1 dimensions, which rendering them ideal tools for investigating topological photonics. By integrating topological concepts into these waveguides, researchers not only deepen their understanding of topological physics but also provide potential methodology for developing advanced topological photonic integrated devices. In this review, we discuss recent experimental implementations of different topological phases within femtosecond laser direct-written photonic waveguides, as well as the fascinating physical phenomena induced by the interplay of topology with non-Hermiticity, nonlinearity and quantum physics are also introduced. The exploration of topological waveguide arrays shows great promise in advancing the field of topological photonics, providing a solid foundation for further research and innovation in this rapidly developing domain.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00040-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Photonic topological insulators in femtosecond laser direct-written waveguides\",\"authors\":\"Wenchao Yan, Bin Zhang, Feng Chen\",\"doi\":\"10.1038/s44310-024-00040-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological photonics attract significant interests due to their intriguing fundamental physics and potential applications. Researchers are actively exploring various artificial platforms to realize novel topological phenomena, which provides promising pathways for the development of robust photonic devices. Among these platforms, femtosecond laser direct-written photonic waveguides show unique ability to visualize intricate light dynamics in 2 + 1 dimensions, which rendering them ideal tools for investigating topological photonics. By integrating topological concepts into these waveguides, researchers not only deepen their understanding of topological physics but also provide potential methodology for developing advanced topological photonic integrated devices. In this review, we discuss recent experimental implementations of different topological phases within femtosecond laser direct-written photonic waveguides, as well as the fascinating physical phenomena induced by the interplay of topology with non-Hermiticity, nonlinearity and quantum physics are also introduced. The exploration of topological waveguide arrays shows great promise in advancing the field of topological photonics, providing a solid foundation for further research and innovation in this rapidly developing domain.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00040-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00040-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00040-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑光子学因其引人入胜的基础物理学和潜在应用而备受关注。研究人员正在积极探索各种人工平台,以实现新颖的拓扑现象,这为开发坚固耐用的光子器件提供了前景广阔的途径。在这些平台中,飞秒激光直写光子波导显示出独特的能力,能在 2 + 1 维度上可视化复杂的光动力学,这使它们成为研究拓扑光子学的理想工具。通过将拓扑概念融入这些波导,研究人员不仅加深了对拓扑物理的理解,还为开发先进的拓扑光子集成器件提供了潜在的方法。在这篇综述中,我们讨论了飞秒激光直写光子波导中不同拓扑相位的最新实验实现,还介绍了拓扑与非恒定性、非线性和量子物理相互作用所诱发的迷人物理现象。对拓扑波导阵列的探索显示了推进拓扑光子学领域的巨大前景,为这一快速发展领域的进一步研究和创新奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonic topological insulators in femtosecond laser direct-written waveguides

Photonic topological insulators in femtosecond laser direct-written waveguides
Topological photonics attract significant interests due to their intriguing fundamental physics and potential applications. Researchers are actively exploring various artificial platforms to realize novel topological phenomena, which provides promising pathways for the development of robust photonic devices. Among these platforms, femtosecond laser direct-written photonic waveguides show unique ability to visualize intricate light dynamics in 2 + 1 dimensions, which rendering them ideal tools for investigating topological photonics. By integrating topological concepts into these waveguides, researchers not only deepen their understanding of topological physics but also provide potential methodology for developing advanced topological photonic integrated devices. In this review, we discuss recent experimental implementations of different topological phases within femtosecond laser direct-written photonic waveguides, as well as the fascinating physical phenomena induced by the interplay of topology with non-Hermiticity, nonlinearity and quantum physics are also introduced. The exploration of topological waveguide arrays shows great promise in advancing the field of topological photonics, providing a solid foundation for further research and innovation in this rapidly developing domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信