神经网络算法在英语短文翻译中的自动查错研究

IF 0.8 Q4 ROBOTICS
Liang Guo
{"title":"神经网络算法在英语短文翻译中的自动查错研究","authors":"Liang Guo","doi":"10.1007/s10015-024-00952-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing population of English learners, how to improve the efficiency of English learning has become a focus of research. This article focuses on automatic error-checking in English short text translation. The Transformer model was enhanced by combining with the bidirectional gated recurrent unit (BiGRU) algorithm to create a dual-encoder model that better captures information within input sequences. Experiments were then conducted on different corpora. The improved Transformer model obtained a <span>\\({\\text{F}}_{0.5}\\)</span> of 59.09 on CoNLL-2014 and 61.05 Google-bilingual evaluation understudy (GLEU) on JFLEG, both of which were better than the other methods compared. The case analysis showed that the improved Transformer model accurately found errors in short text translation. The findings indicate that the proposed approach is reliable in the automatic error-checking of English short text translation and can be applied in practice.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on automatic error-checking in English short text translation by a neural network algorithm\",\"authors\":\"Liang Guo\",\"doi\":\"10.1007/s10015-024-00952-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the growing population of English learners, how to improve the efficiency of English learning has become a focus of research. This article focuses on automatic error-checking in English short text translation. The Transformer model was enhanced by combining with the bidirectional gated recurrent unit (BiGRU) algorithm to create a dual-encoder model that better captures information within input sequences. Experiments were then conducted on different corpora. The improved Transformer model obtained a <span>\\\\({\\\\text{F}}_{0.5}\\\\)</span> of 59.09 on CoNLL-2014 and 61.05 Google-bilingual evaluation understudy (GLEU) on JFLEG, both of which were better than the other methods compared. The case analysis showed that the improved Transformer model accurately found errors in short text translation. The findings indicate that the proposed approach is reliable in the automatic error-checking of English short text translation and can be applied in practice.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-024-00952-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00952-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

随着英语学习者人数的不断增加,如何提高英语学习效率已成为研究的重点。本文主要研究英语短文翻译中的自动错误检查。通过结合双向门控递归单元(BiGRU)算法,Transformer 模型得到了增强,从而创建了一个双编码器模型,能更好地捕捉输入序列中的信息。然后在不同的语料库中进行了实验。改进后的 Transformer 模型在 CoNLL-2014 上的 \({\{F}}_{0.5}\) 得分为 59.09,在 JFLEG 上的谷歌双语评估 understudy (GLEU) 得分为 61.05,均优于所比较的其他方法。案例分析表明,改进后的 Transformer 模型能准确发现短文翻译中的错误。研究结果表明,所提出的方法在英语短文翻译的自动查错方面是可靠的,可以在实践中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on automatic error-checking in English short text translation by a neural network algorithm

Research on automatic error-checking in English short text translation by a neural network algorithm

With the growing population of English learners, how to improve the efficiency of English learning has become a focus of research. This article focuses on automatic error-checking in English short text translation. The Transformer model was enhanced by combining with the bidirectional gated recurrent unit (BiGRU) algorithm to create a dual-encoder model that better captures information within input sequences. Experiments were then conducted on different corpora. The improved Transformer model obtained a \({\text{F}}_{0.5}\) of 59.09 on CoNLL-2014 and 61.05 Google-bilingual evaluation understudy (GLEU) on JFLEG, both of which were better than the other methods compared. The case analysis showed that the improved Transformer model accurately found errors in short text translation. The findings indicate that the proposed approach is reliable in the automatic error-checking of English short text translation and can be applied in practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信