Elnaz Shafipour, Sebastian Stein, Selin Ahipasaoglu
{"title":"通过在线估算器进行个性化电动汽车充电桩规划","authors":"Elnaz Shafipour, Sebastian Stein, Selin Ahipasaoglu","doi":"10.1007/s10458-024-09671-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the problem of finding charging stops while travelling in electric vehicles (EVs) using artificial intelligence (AI). Choosing a charging station is challenging, because drivers have very heterogeneous preferences in terms of how they trade off the features of various alternatives (for example, regarding the time spent driving, charging costs, waiting times at charging stations, and the facilities provided at the charging stations). The key problem here is eliciting the diverse preferences of drivers, assuming that these preferences are typically not fully known a priori, and then planning stops based on each driver’s preferences. Our approach to solving this problem is to develop an intelligent personal agent that learns preferences gradually over multiple interactions. This study proposes a new technique that utilises a small-scale discrete choice experiment as a method of interacting with the driver in order to minimise the cognitive burden on the driver. Using this method, drivers are presented with a variety of routes with possible combinations of charging stops depending on the agent’s latest belief about their preferences. In subsequent iterations, the personal agent will continue to learn and refine its belief about the driver’s preferences, suggesting more personalised routes that are closer to the driver’s preferences. Based on real preference data from EV drivers, we evaluate our novel algorithm and show that, after only a few queries, our method quickly converges to the optimal routes for EV drivers [This paper is an extended version of an ECAI workshop short paper (Shafipour Yourdshahi et al., in: ECAI 2023 workshops, Kraków, Poland, 2023)].</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-024-09671-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Personalised electric vehicle charging stop planning through online estimators\",\"authors\":\"Elnaz Shafipour, Sebastian Stein, Selin Ahipasaoglu\",\"doi\":\"10.1007/s10458-024-09671-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we address the problem of finding charging stops while travelling in electric vehicles (EVs) using artificial intelligence (AI). Choosing a charging station is challenging, because drivers have very heterogeneous preferences in terms of how they trade off the features of various alternatives (for example, regarding the time spent driving, charging costs, waiting times at charging stations, and the facilities provided at the charging stations). The key problem here is eliciting the diverse preferences of drivers, assuming that these preferences are typically not fully known a priori, and then planning stops based on each driver’s preferences. Our approach to solving this problem is to develop an intelligent personal agent that learns preferences gradually over multiple interactions. This study proposes a new technique that utilises a small-scale discrete choice experiment as a method of interacting with the driver in order to minimise the cognitive burden on the driver. Using this method, drivers are presented with a variety of routes with possible combinations of charging stops depending on the agent’s latest belief about their preferences. In subsequent iterations, the personal agent will continue to learn and refine its belief about the driver’s preferences, suggesting more personalised routes that are closer to the driver’s preferences. Based on real preference data from EV drivers, we evaluate our novel algorithm and show that, after only a few queries, our method quickly converges to the optimal routes for EV drivers [This paper is an extended version of an ECAI workshop short paper (Shafipour Yourdshahi et al., in: ECAI 2023 workshops, Kraków, Poland, 2023)].</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-024-09671-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-024-09671-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09671-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Personalised electric vehicle charging stop planning through online estimators
In this paper, we address the problem of finding charging stops while travelling in electric vehicles (EVs) using artificial intelligence (AI). Choosing a charging station is challenging, because drivers have very heterogeneous preferences in terms of how they trade off the features of various alternatives (for example, regarding the time spent driving, charging costs, waiting times at charging stations, and the facilities provided at the charging stations). The key problem here is eliciting the diverse preferences of drivers, assuming that these preferences are typically not fully known a priori, and then planning stops based on each driver’s preferences. Our approach to solving this problem is to develop an intelligent personal agent that learns preferences gradually over multiple interactions. This study proposes a new technique that utilises a small-scale discrete choice experiment as a method of interacting with the driver in order to minimise the cognitive burden on the driver. Using this method, drivers are presented with a variety of routes with possible combinations of charging stops depending on the agent’s latest belief about their preferences. In subsequent iterations, the personal agent will continue to learn and refine its belief about the driver’s preferences, suggesting more personalised routes that are closer to the driver’s preferences. Based on real preference data from EV drivers, we evaluate our novel algorithm and show that, after only a few queries, our method quickly converges to the optimal routes for EV drivers [This paper is an extended version of an ECAI workshop short paper (Shafipour Yourdshahi et al., in: ECAI 2023 workshops, Kraków, Poland, 2023)].
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.