Everaldo M. Bonotto, Alexandre N. Carvalho, Marcelo J. D. Nascimento, Eric B. Santiago
{"title":"强阻尼波方程非自治耦合系统的回拉吸引子的下半连续性","authors":"Everaldo M. Bonotto, Alexandre N. Carvalho, Marcelo J. D. Nascimento, Eric B. Santiago","doi":"10.1007/s00245-024-10170-1","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower Semicontinuity of Pullback Attractors for a Non-autonomous Coupled System of Strongly Damped Wave Equations\",\"authors\":\"Everaldo M. Bonotto, Alexandre N. Carvalho, Marcelo J. D. Nascimento, Eric B. Santiago\",\"doi\":\"10.1007/s00245-024-10170-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10170-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10170-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Lower Semicontinuity of Pullback Attractors for a Non-autonomous Coupled System of Strongly Damped Wave Equations
The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.