强阻尼波方程非自治耦合系统的回拉吸引子的下半连续性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Everaldo M. Bonotto, Alexandre N. Carvalho, Marcelo J. D. Nascimento, Eric B. Santiago
{"title":"强阻尼波方程非自治耦合系统的回拉吸引子的下半连续性","authors":"Everaldo M. Bonotto,&nbsp;Alexandre N. Carvalho,&nbsp;Marcelo J. D. Nascimento,&nbsp;Eric B. Santiago","doi":"10.1007/s00245-024-10170-1","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower Semicontinuity of Pullback Attractors for a Non-autonomous Coupled System of Strongly Damped Wave Equations\",\"authors\":\"Everaldo M. Bonotto,&nbsp;Alexandre N. Carvalho,&nbsp;Marcelo J. D. Nascimento,&nbsp;Eric B. Santiago\",\"doi\":\"10.1007/s00245-024-10170-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10170-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10170-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究与强阻尼波方程的非自治耦合系统相关的回拉吸引子群的稳健性,该系统是著名的克莱因-戈登-扎哈罗夫系统的改进版。在适当的双曲性条件下,我们建立了与该演化系统相关的极限回拉吸引子的梯度状结构,并证明了回拉吸引子族在零点的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Semicontinuity of Pullback Attractors for a Non-autonomous Coupled System of Strongly Damped Wave Equations

The aim of this paper is to study the robustness of the family of pullback attractors associated with a non-autonomous coupled system of strongly damped wave equations, which is a modified version of the well known Klein–Gordon–Zakharov system. Under appropriate hyperbolicity conditions, we establish the gradient-like structure of the limit pullback attractor associated with this evolution system, and we prove the continuity of the family of pullback attractors at zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信