论克莱希南模型中的反常扩散和时间相关变体

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Keefer Rowan
{"title":"论克莱希南模型中的反常扩散和时间相关变体","authors":"Keefer Rowan","doi":"10.1007/s00205-024-02045-0","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a concise PDE-based proof of anomalous diffusion in the Kraichan model—a stochastic, white-in-time model of passive scalar turbulence; that is, we show an exponential rate of <span>\\(L^2\\)</span> decay in expectation of a passive scalar advected by a certain white-in-time, correlated-in-space, divergence-free Gaussian field, uniform in the initial data and the diffusivity of the passive scalar. Additionally, we provide examples of correlated-in-time versions of the Kraichnan model which fail to exhibit anomalous diffusion despite their (formal) white-in-time limits exhibiting anomalous diffusion. As part of this analysis, we prove that anomalous diffusion of a scalar advected by some flow implies non-uniqueness of the ODE trajectories of that flow.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Anomalous Diffusion in the Kraichnan Model and Correlated-in-Time Variants\",\"authors\":\"Keefer Rowan\",\"doi\":\"10.1007/s00205-024-02045-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a concise PDE-based proof of anomalous diffusion in the Kraichan model—a stochastic, white-in-time model of passive scalar turbulence; that is, we show an exponential rate of <span>\\\\(L^2\\\\)</span> decay in expectation of a passive scalar advected by a certain white-in-time, correlated-in-space, divergence-free Gaussian field, uniform in the initial data and the diffusivity of the passive scalar. Additionally, we provide examples of correlated-in-time versions of the Kraichnan model which fail to exhibit anomalous diffusion despite their (formal) white-in-time limits exhibiting anomalous diffusion. As part of this analysis, we prove that anomalous diffusion of a scalar advected by some flow implies non-uniqueness of the ODE trajectories of that flow.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02045-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02045-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了基于PDE的克莱希南模型--一种被动标量湍流的随机白时模型--中的反常扩散的简明证明;也就是说,我们展示了一个被动标量在某一白时、空间相关、无发散高斯场(在初始数据和被动标量的扩散性上是均匀的)作用下平流的预期指数(L^2\)衰减率。此外,我们还举例说明了克拉伊赫南模型的时空相关版本,尽管它们的(形式)时空白限表现出反常扩散,但却没有表现出反常扩散。作为分析的一部分,我们证明了由某种流平流的标量的反常扩散意味着该流的 ODE 轨迹的非唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Anomalous Diffusion in the Kraichnan Model and Correlated-in-Time Variants

We provide a concise PDE-based proof of anomalous diffusion in the Kraichan model—a stochastic, white-in-time model of passive scalar turbulence; that is, we show an exponential rate of \(L^2\) decay in expectation of a passive scalar advected by a certain white-in-time, correlated-in-space, divergence-free Gaussian field, uniform in the initial data and the diffusivity of the passive scalar. Additionally, we provide examples of correlated-in-time versions of the Kraichnan model which fail to exhibit anomalous diffusion despite their (formal) white-in-time limits exhibiting anomalous diffusion. As part of this analysis, we prove that anomalous diffusion of a scalar advected by some flow implies non-uniqueness of the ODE trajectories of that flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信