一对算子的欧氏算子半径的进一步界限及其应用

IF 0.9 Q2 MATHEMATICS
Soumia Aici, Abdelkader Frakis, Fuad Kittaneh
{"title":"一对算子的欧氏算子半径的进一步界限及其应用","authors":"Soumia Aici,&nbsp;Abdelkader Frakis,&nbsp;Fuad Kittaneh","doi":"10.1007/s13370-024-01189-2","DOIUrl":null,"url":null,"abstract":"<div><p>We give several lower and upper bounds for the Euclidean operator radius of two operators on a Hilbert space. We improve some earlier related bounds. Also, as applications of these bounds, we deduce some new bounds for the classical numerical radius. Some of these bounds are refinements of certain existing bounds.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further bounds for the Euclidean operator radius of a pair of operators and their applications\",\"authors\":\"Soumia Aici,&nbsp;Abdelkader Frakis,&nbsp;Fuad Kittaneh\",\"doi\":\"10.1007/s13370-024-01189-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give several lower and upper bounds for the Euclidean operator radius of two operators on a Hilbert space. We improve some earlier related bounds. Also, as applications of these bounds, we deduce some new bounds for the classical numerical radius. Some of these bounds are refinements of certain existing bounds.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01189-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01189-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了希尔伯特空间上两个算子的欧氏算子半径的几个下限和上限。我们改进了一些早期的相关界值。此外,作为这些界值的应用,我们还推导出了经典数值半径的一些新界值。其中一些界值是对某些现有界值的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further bounds for the Euclidean operator radius of a pair of operators and their applications

We give several lower and upper bounds for the Euclidean operator radius of two operators on a Hilbert space. We improve some earlier related bounds. Also, as applications of these bounds, we deduce some new bounds for the classical numerical radius. Some of these bounds are refinements of certain existing bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信