{"title":"结构单调夹杂的原点-双向后向反射前向分裂算法","authors":"Vũ Công Bằng, Dimitri Papadimitriou, Vũ Xuân Nhâm","doi":"10.1007/s40306-024-00535-7","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a primal-dual backward reflected forward splitting method for solving structured primal-dual monotone inclusions in real Hilbert spaces. The algorithm allows to use the inexact computations of Lipschitzian and cocoercive operators. The strong convergence of the generated iterative sequence is proved under the strong monotonicity condition, whilst the weak convergence is formally proved under several conditions used in the literature. An application to a structured minimization problem is provided.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 2","pages":"159 - 172"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Primal-dual Backward Reflected Forward Splitting Algorithm for Structured Monotone Inclusions\",\"authors\":\"Vũ Công Bằng, Dimitri Papadimitriou, Vũ Xuân Nhâm\",\"doi\":\"10.1007/s40306-024-00535-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a primal-dual backward reflected forward splitting method for solving structured primal-dual monotone inclusions in real Hilbert spaces. The algorithm allows to use the inexact computations of Lipschitzian and cocoercive operators. The strong convergence of the generated iterative sequence is proved under the strong monotonicity condition, whilst the weak convergence is formally proved under several conditions used in the literature. An application to a structured minimization problem is provided.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 2\",\"pages\":\"159 - 172\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00535-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00535-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Primal-dual Backward Reflected Forward Splitting Algorithm for Structured Monotone Inclusions
We propose a primal-dual backward reflected forward splitting method for solving structured primal-dual monotone inclusions in real Hilbert spaces. The algorithm allows to use the inexact computations of Lipschitzian and cocoercive operators. The strong convergence of the generated iterative sequence is proved under the strong monotonicity condition, whilst the weak convergence is formally proved under several conditions used in the literature. An application to a structured minimization problem is provided.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.